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Universidad de Castilla La Mancha

13071, Ciudad Real, Spain

http://matematicas.uclm.es/omeva

Abstract: The purpose of this work is to carry out the analysis of two-
dimensional scalar variational problems by the method of moments. This
method is indeed shown to be useful for treating general cases in which the
Lagrangian is a separable polynomial in the derivative variables. In these cases,
it follows that the discretization of these problems can be reduced to a single
large scale semidefinite program.

Key words: calculus of variations, young measures, the method of moments,
semidefinite programming, microstructure, non linear elasticity

1



2

1 INTRODUCTION

The classical theory of variational calculus does not provide any satisfactory
methods to analyze non-convex variational problems expressed in the form

min
u

I (u) =
∫

Ω

f
(

~∇u (x, y)
)

dx dy s.t. u|∂Ω = g (1.1)

where f is a coercive non-convex Lagrangian function, and u the family of all
admissible scalar functions defined on Ω. For a review on recent methods in the
calculus of variations see [1].

In order to analyze this class of non-convex variational problems, we must
appeal to a new formulation with respect to Young measures. For these prob-
lems we introduce the generalized functional

Ĩ (ν) =
∫
Ω

(∫
R2 f (s, t) dµx,y (s, t)

)
dx dy

with ~∇u (x, y) =
∫

R2 (s, t) dµx,y (s, t)
and the boundary condition u|∂Ω = g

(1.2)

where
ν = {µx,y : (x, y) ∈ Ω}

is a parametrized family of probability measures supported on the plane. Each
one of these sets ν is called a Young measure, hence the generalized functional
Ĩ is defined in the family of all Young measures ν.

Young measures theory predicts that the generalized functional (1.2) has a
Young measure minimizer

ν∗ = {µ̄x,y : (x, y) ∈ Ω}

which provides information about the limit behavior of the minimizing se-
quences of the functional I given in (1.1) . Thus,

~∇un (x, y) → dµ̄x,y (1.3)

in measure, whenever un is a minimizing sequence for the functional I. One
immediate conclusion is that functional I has a unique minimizer if and only
if the generalized functional Ĩ has a minimizer ν∗ composed only of Dirac
measures. In this case

µ̄x,y = δ~∇ū(x,y)

where ū is a minimizer for I. For a thorough study on Young measures and
calculus of variations see [2].

In the present work, we will study the particular case in which the Lagrangian
function f takes the polynomial separable form

f (s, t) =
2n∑

i=0

ai si +
2r∑

j=0

bj tj with c2n , b2r > 0 . (1.4)
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Under this assumption, Problem (1.2) may be reduced to a single semidefinite
program using the theory of the classical problem of moments and elementary
convex analysis.

The present paper is organized as follows: in Section 2 we will see a short
review on the use of the Method of Moments for treating one dimensional
non convex variational problems. In Section 3 we will see how the Method of
Moments is used for analyzing the convex envelope of one-dimensional algebraic
polynomials. Section 4 describes the general analysis of two dimensional non
convex variational problems by the Method of Moments. Section 5 shows how
transform the analytical formulation into a particular mathematical program.
In Section 6 we will see some examples in detail and finally Section 7 gives some
comments about the interplay of this work with pure and applied mathematics.

2 THE METHOD OF MOMENTS

The generalized formulation in Young measures is valid for one-dimensional
non convex variational problems like

min
u

∫ 1

0

f (u′ (x)) dx s.t. u (0) = 0, u (1) = α .

Assuming that f is a one-dimensional polynomial in the form

f (t) =
2n∑

k=0

ck tk c2n > 0 (2.1)

the generalized problem in Young measures

minν Ĩ (ν) =
∫ 1

0

∫
R

f (λ) dµx (λ) dx
with u′ (x) =

∫
R

λ dµx (λ)
u (0) = 0, u (1) = α

(2.2)

can be recast as
minm

∫ 1

0

∑2n
k=0 ck mk (x) dx

with u′ (x) = m1 (x)
u (0) = 0, u (1) = α

(2.3)

where mk (x) are the algebraic moments of the parametrized measures µx which
form the one-dimensional Young measure

ν = {µx : 0 ≤ x ≤ 1} .

The theory of moments provides a good characterization for the algebraic
moments of positive measures supported on the real line. Therefore we can
study the one-dimensional generalized problem (2.2) by solving the optimiza-
tion problem (2.3) . Here we will study two-dimensional problems defined by
separable polynomials in the form (1.4) .

For a short review on applications of the method of moments for one-
dimensional non-convex variational problems see [3]. The essential facts about
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the characterization of one-dimensional algebraic moments are exposed in [4].
The difficulties about the characterization of two-dimensional algebraic mo-
ments are explained in [5].

3 CONVEX ENVELOPES

Given a one-dimensional polynomial (2.1) , its convex envelope may be defined
as

fc (t) = min
µ

∫

R

f (λ) dµ (λ) (3.1)

where µ represents the family of all probability measures with mean t. In this
approach, every probability measure represents a convex combination of points
on the real line. Therefore, the measure

µ̄ = λ1δt1 + λ2δt2 (3.2)

which solves (3.1) , represents the convex combination which satisfies

λ1 (t1, f (t1)) + λ2 (t2, f (t2)) = (t, fc (t)) .

From this point of view, it is clear that optimal measure µ̄ has a very precise
geometric meaning. Here we have assumed that µ̄ is supported in two points
at the most, because of Caratheodory’s theorem in convex analysis.

Since f is a polynomial function in the form (2.1) , every integral in (3.1)
can be written as

2n∑

k=0

ck mk

where values m0, . . . ,m2n are the algebraic moments of measure µ. So we can
express the convex envelope of f using the next semidefinite program

fc (t) = c0 + c1t + minmk

∑2n
k=2 ck mk s.t.



1 t m2 · · · mn

t m2 m3 · · · mn+1

m2 m3 · · · mn+2

· · ·
mn mn+1 mn+2 · · · m2n




º 0
(3.3)

where we have used the classical representation of one-dimensional algebraic
moments: The convex cone of positive definite Hankel matrices H = (mk+l)

n
k,l=0

is the interior of the convex cone of algebraic moments (m0, . . . ,m2n) of posi-
tive measures supported on the real line. For more details we refer the reader
to [4].

By using an elementary algebraic procedure, we can obtain the optimal mea-
sure µ̄ for problem (3.1) from the optimal values m̄2, . . . , m̄2n of the semidefinite
program (3.3) . Indeed, if m̄2 = t2, take

λ1 = 1, λ2 = 0, t1 = t2 = t
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so the optimal measure µ̄ is equal to the Dirac measure

µ̄ = δt.

Otherwise, take t1 and t2 as the roots of the polynomial

P (x) =

∣∣∣∣∣∣

1 t m̄2

t m̄2 m̄3

1 x x2

∣∣∣∣∣∣

and denote by λ1, λ2 the quantities

λ1 =
t2 − t

t2 − t1
λ2 =

t− t1
t2 − t1

where t1 < t < t2. Using these values in the expression (3.2) , we obtain the
optimal measure µ̄. It is remarkable that only three moments are needed for
recovering the optimal measure µ̄. Finally, we conclude that Problem (3.1) and
Problem (3.3) are equivalent. For additional details see [6]

When f is a two-dimensional separable polynomial with the form (1.4) , its
convex envelope is defined as

fc (s, t) = min
µ

∫

R2
f (σ, γ) dµ (σ, γ) (3.4)

where µ represents the family of all probability measures supported in the plane
satisfying

(s, t) =
∫

R2
(σ, γ) dµ (σ, γ) .

Note that it is analogous to the definition of convex envelopes for one-dimensional
functions.

However, in order to estimate the convex envelope of the separable polyno-
mial f, we must use another well known result of convex analysis: the convex
envelope of a separable function is the sum of the convex envelopes of its com-
ponents. See [1]. From this result and the explanation on convex envelopes of
one-dimensional polynomials given above, one observes that the convex enve-
lope of f is given by the semidefinite program

fc (s, t) = a0 + b0 + a1s + b1t + minmi,pj

∑2n
i=2 aimi +

∑2r
j=2 bjpj s.t



1 s m2 · · · mn

s m2 m3 · · · mn+1

m2 m3 · · · mn+2

· · ·
mn mn+1 mn+2 · · · m2n




º 0




1 t p2 · · · pr

t p2 p3 · · · pr+1

p2 p3 · · · pr+2

· · ·
pr pr+1 pr+2 · · · p2r




º 0 .

(3.5)
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The optimal values m̄2, . . . , m̄2n, p̄2, . . . , p̄2r for problem (3.5) allow us to de-
termine the optimal probability measure µ̄ which satisfies (3.4) .

From a practical point of view, µ̄ is the direct product of two independent
one-dimensional distributions µ̄X and µ̄Y , so we have

µ̄ = µ̄X × µ̄Y

where µ̄X represents the convex envelope of the first polynomial

2n∑

i=0

ais
i

in (1.4) and respectively, µ̄Y represents the convex envelope of the second poly-
nomial

2r∑

j=0

bjt
j

in (1.4) . Thus, marginal distributions µ̄X and µ̄Y are obtained from values
s, m̄2, m̄3 and t, p̄2, p̄3 respectively, in the same way that we did for the one-
dimensional case. In other words, there is no essential difference between the
one-dimensional polynomial case (2.1) and the two-dimensional separable poly-
nomial case (1.4) . Finally, it is very important to note that the optimal measure
µ̄ = µ̄X × µ̄Y determines the convex combination which defines the convex en-
velope of the separable polynomial f at the point (s, t) .

4 PROBLEM ANALYSIS

Our concern here is the analysis of non-convex variational problems like

min
u

I (u) =
∫

Ω

f
(

~∇u (x, y)
)

dx dy s.t. u|∂Ω = g . (4.1)

We will study the case where f is a two-dimensional separable polynomial in
the general form (1.4) . We first notice that direct discretization of functional I
in (4.1) provides a non-convex optimization problem which is not particularly
adequate to be solved by standard numerical optimization software. The reason
behind that is the lack of convexity on f, which can cause the search algorithm
to stop at some wrong local minima instead of providing the right global min-
ima for the functional I. In addition, we must consider the possibility that I
lacks minimizers on the space of admissible functions. Normally, admissible
functions belong to the Sobolev space W 1,p

0 (Ω) + g where index p depends on
the integrand function f in (4.1) .

To overcome this difficulty we study the generalized problem

minν Ĩ (ν) =
∫
Ω

(∫
R2 f (s, t) dµx,y (s, t)

)
dx dy

with ~∇u (x, y) =
∫

R2 (s, t) dµx,y (s, t)
and the boundary condition u|∂Ω = g

(4.2)
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whose solution in Young measures provides information about the minimizers
of the original functional I. By using the separable polynomial structure of f,
we can transform the generalized functional in (4.2) into the functional

J (m, p) =
∫

Ω




2n∑

i=0

aimi (x, y) +
2r∑

j=0

bjpj (x, y)


 dx dy

where m = (mi (x, y))2n
i=0 and p = (pj (x, y))2r

j=0 represent the algebraic mo-
ments of the parametrized measures µx,y in the Young measure ν. In this way,
we must solve the optimization problem

minm,p J (m, p) =
∫
Ω

(∑2n
i=0 aimi (x, y) +

∑2r
j=0 bjpj (x, y)

)
dx dy

with ~∇u (x, y) = (m1 (x, y) , p1 (x, y))
and the boundary condition u|∂Ω = g

(4.3)

where the new sets of variables m and p must be characterized as the algebraic
moments of one-dimensional probability measure. In order to do so, we impose
the linear matrix inequalities




1 m1 (x, y) · · · mn (x, y)
m1 (x, y) m2 (x, y) · · · mn+1 (x, y)
m2 (x, y) m3 (x, y) · · · mn+2 (x, y)

· · ·
mn (x, y) mn+1 (x, y) · · · m2n (x, y)




º 0




1 p1 (x, y) · · · pr (x, y)
p1 (x, y) p2 (x, y) · · · pr+1 (x, y)
p2 (x, y) p3 (x, y) · · · pr+2 (x, y)

· · ·
pr (x, y) pr+1 (x, y) · · · p2r (x, y)




º 0

(4.4)

for every point (x, y) ∈ Ω. After an appropriate discretization, this problem can
be posed as a single semidefinite program. See [7] and [8] for an introduction
to semidefinite programming.

5 DISCRETE AND FINITE MODEL

Here we will transform the optimization problem (4.3 ) subject to the con-
straints (4.4) , into an equivalent discrete mathematical program. First, we
take a finite set of N points on the domain Ω indexed by k, that is

(xk, yk) ∈ Ω for k = 1 , . . . ,N . (5.1)

Next, for every discrete point (xk, yk) we take the algebraic moments

(mi (xk, yk))2n
i=1 (pj (xk, yk))2r

j=1 (5.2)
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of the respective parametrized measure µxk,yk
. Using the 2N×(n + r) variables

listed in (5.2) , we can express the functional J in the discrete form:

Jd (m, p) =
N∑

k=0




2n∑

i=0

aimi (xk, yk) +
2r∑

j=0

bjpj (xk, yk)


∆xk ∆yk . (5.3)

The constraints (4.4) form a set of linear matrix inequalities for every point in
Ω, hence they should keep the same for every point (xk, yk) in the mesh (5.1) .
So we have a set of 2N linear matrix inequalities expressed as

[mi+j (xk, yk)]ni,j=0 º 0 [pi+j (xk, yk)]ri,j=0 º 0 (5.4)

where m0 = 1 and p0 = 1 for every k = 1, . . . , N.
In order to impose the boundary conditions

u|∂Ω = g

and the constraints
~∇u (x, y) = (m1 (x, y) , p1 (x, y)) (5.5)

in (4.3) , we use the following fact: Given any Jordan curve C inside the domain
Ω, the restriction (5.5) implies

∫

C
(m1 dx + p1 dy) = u (xf , yf )− u (x0, y0)

where (x0, y0) and (xf , yf ) are two endpoints of curve C.
We shall select a finite collection of M curves Cl with l = 1, . . . ,M which, in

some sense, sweep the whole domain Ω. It will suffice that each point (xk, yk)
on the mesh belongs to at least one curve Cl. In order to impose the boundary
conditions in (4.3) , every curve Cl must link two boundary points of Ω. So we
obtain a new set of M constraints in the form∫

Cl

(m1 dx + p1 dy) = g
(
xl

f , yl
f

)− g
(
xl

0, y
l
0

)
(5.6)

which can be incorporated as linear equalities in the discrete model.
We can see that optimization problem (4.3) can be transformed into a single

semidefinite program after discretization. Note that objective function Jd in
(5.3) is a linear function of the variables in (5.2) . Those variables are restricted
by the set of 2N linear matrix inequalities given in (5.4) and the set of M linear
equations given in (5.6) . Thus, we have obtained a very large single semidefinite
program.

6 EXAMPLES

To illustrate the method proposed in this work, we will analyze the non-convex
variational problem

min
u

∫

[−1,1]2





(
1−

(
∂u

∂x

)2
)2

+
(

∂u

∂y

)2


 dx dy
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under the following boundary conditions

a) g (x, y) = 0 b) g (x, y) = 1− |x| c) g (x, y) = x + 1 .

The corresponding generalized problem has the form

minν

∫
[−1,1]2

{∫
R2

((
1− σ2

)2 + γ2
)

dµx,y (σ, γ)
}

dx dy

under the constraint
(

∂u
∂x , ∂u

∂y

)
=

∫
R2 (σ, γ) dµx,y (σ, γ)

and the boundary conditions u|∂Ω = g (x) with Ω = [−1 , 1 ]2

(6.1)
which transforms into the optimization problem

minm,p

∫
[−1,1]2

{1− 2m2 (x, y) + m4 (x, y) + p2 (x, y)} dx dy

under the constraints(
∂u
∂x , ∂u

∂y

)
= (m1 (x, y) , p1 (x, y)) , [mi+j (x, y)]2i,j=0 º 0, [pi+j (x, y)]1i,j=0 º 0

and the boundary conditions u|∂Ω = g (x) with Ω = [−1 , 1 ]2 .
(6.2)

In order to perform the discretization of this problem, we use the straight
lines with slope 1 crossing the square [−1, 1]2 . With them we can impose the
boundary conditions in the finite model. After solving the discrete model, not
to be exposed here, we obtain the optimal moments for (6.2) , and the Young
measure solution for the generalized problem (6.1) .

For the three cases studied, we obtain the following optimal parametrized
measures

a) µ̄x,y = 1
2δ(−1,0) + 1

2δ(1,0) ∀x, y ∈ [−1, 1]2

b) µ̄x,y =
{

δ(1,0) if −1 ≤ x ≤ 0
δ(−1,0) if 0 ≤ x ≤ 1

c) µ̄x,y = δ(1,0) ∀x, y ∈ [−1, 1]2

hence we infer that Problem a) does not have minimizers, Problem b) has the
minimizer ū (x, y) = 1− |x| and Problem c) has the minimizer ū (x, y) = x + 1.
Although Problem a) lacks minimizers, the optimal Young measure obtained
gives enough information about the limit behavior of the minimizing sequences.
Indeed, if un is an arbitrary minimizing sequence for Problem a) we have

~∇un (x, y) → (±1, 0)

in measure, where gradient (1, 0) is preferred with 50% of possibilities and
gradient (−1, 0) is preferred with the remaining 50% of possibilities in the
minimizing process, for every point (x, y) ∈ [−1, 1]2 .

7 CONCLUDING REMARKS

The major contribution of this work is that it settles the way for studying non-
convex variational problems of the form (4.1) . Indeed, the direct method of the
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calculus of variations does not provide any answer for them if the integrand f is
not convex. See [1]. In addition, in this work we propose a method for solving
generalized problems like (4.2) when the integrand f has the separable form
described in (1.4) . In fact to the best knowledge of the author, do not exist
other proposals to analyze this kind of generalized problems in two dimensions.

An important remark about this work is that we have reduced the origi-
nal non convex variational problem (4.1) to the optimization problem (4.3) .
In addition, the reader should note that Problem (4.3) is a convex problem
because the objective function is linear and the feasible set convex. That is
a remarkable qualitative difference since numerical implementation of problem
(4.1) may provide wrong answers when the search algorithm stops in local min-
ima, whereas a good implementation of Problem (4.3) should yield the global
minima of the problem.

Since we can pose Problem (4.3) as a single large scale semidefinite program,
we can use existing software for solving non convex variational problems in
the form (4.1) whenever the integrand f has the separable form (1.4) . This
situation prompts further research on large scale semidefinite programming
specially suited for generalized problems in the form (4.3) .

We should also stress that, although the original non convex variational prob-
lem (4.1) may not have a solution, its new formulation (4.3) always has one. In
general, this solution is unique and provides information about the existence of
minimizers for problem (4.1) . If Problem (4.1) has a unique minimizer u (x, y) ,
then Problem (4.3) provides the moments of the Dirac measures

{
δ−→∇u(x,y)

: (x, y) ∈ Ω
}

.

Moreover, if Problem (4.3) provides the moments of a family of Dirac measures
like {

δ−→
F (x,y)

: (x, y) ∈ Ω
}

then problem (4.1) has a unique minimizer u (x, y) which satisfies
−→∇u (x, y) =

−→
F (x, y) .

One fundamental question we feel important to raise is whether the discrete
model (5.3) is an adequate representation of the convex problem (4.3) . From
an analytical point of view, we need to find a particular qualitative feature on
the solution of Problem (4.3), that is the Dirac mass condition on all optimal
measures. So we can hope that even rough numerical models can provide us
with the right qualitative answer about the existence of minimizers for the non
convex variational problem (4.1) . This has actually been observed in many
numerical experiments.

It is also extremely remarkable that we can get a numerical answer to an
analytical question. Indeed, we are clarifying the existence of minimizers of
one particular variational problem from a numerical procedure. This point is
crucial because no analytical method exists which allows to solve this question
when we are coping with general non convex variational problems.
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On the other hand, we really need a fine numerical model because the solu-
tion of problem (4.3) contains the information about the oscillatory behavior
of minimizing sequences of the non convex problem (4.1) . In those cases where
Problem (4.1) lacks solution, minimizing sequences show similar oscillatory be-
havior linked with important features in the physical realm. For example, in
elasticity models of solid mechanics such behavior represents the distribution
of several solid phases inside some particular body. This information provides
the microstructure of the crystalline net of the material.

To discover such phenomena we need a good representation of the optimal
Young measure of the generalized problem (4.2) , which in turns, is embedded
into the solution of the convex formulation in moments (4.3) . In conclusion,
we feel that it is important to devise a good numerical treatment of problem
(4.3) by solving a semidefinite model like (5.3) .
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