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THE METHOD OF MOMENTS IN GLOBAL OPTIMIZATION

R. Meziat UDC 517.977

In this paper, we present a general development, called the method of moments, which allows one to
analyze global optimization problems in which the objective function is given as a linear combination of
simpler functions. The essential feature of the method is its ability to provide nontrivial necessary and
sufficient conditions for global minima. To illustrate the success of this approach, we exhibit an alternative
way of finding global minima of polynomials by solving semidefinite programs.

1. Introduction

A major goal in global optimization is to find the global minima of a function f defined on a subset
Ω of the Euclidean space Rv. One approach to this problem comes from convex analysis, since we can use
the convex envelope of the function f in order to locate its global minima. It is well known that every
convex combination of points in Ω can be described as a discrete probability distribution µ supported in
Ω such that every integral ∫

Ω
f(s) dµ(s)

represents one point over the convex envelope of the function f . For this reason, we study the relaxed
problem

min
µ

∫
Ω
f(s) dµ(s) (1.1)

in order to find the global minima of the objective function f in Ω. For a thorough treatise on convex
analysis, see Rockafellar’s classical text [15].

It is true that relaxed problem (1.1) contains information about all the global minima of the function
f in Ω. However, it cannot be solved easily in practice: consider the huge difficulty of describing all
possible convex combinations of points in Ω. This is precisely the point that we will try to clarify here.
We show how to transform problem (1.1) in order to make it more manageable. This can be done when
we can express the objective function f as the composition of two functions:

f = g ◦ F, (1.2)

where g is linear and F is continuous. The analysis of this kind of situation is what we call the method of
moments, since it is possible to use form (1.2) to express relaxed problem (1.1) as a programming problem
with such nice properties as convexity and linearity. We will explore this general idea in Sec. 2.

Since the function g is a linear functional, every integral in (1.1) takes the form∫
Ω
f(s) dµ(s) =

∫
Ω
g ◦ F (s) dµ(s) = g

(∫
Ω
F (s) dµ(s)

)
.

Thus, we must study only the convex hull of the image of the set Ω ⊂ Rv under the transformation
F : Ω→ Rk. It is easy to see that

co(F (Ω)) =

{∫
Ω
F (s) dµ(s) : µ is a probability distribution

}
,
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where co stands for convex hull. If we were able to properly describe the convex set co(F (Ω)), then we
would only need to study the convex problem

min {g(x) : x ∈ co(F (Ω))} .

Assuming that transformation F : Ω→ Rk is defined as

F (t) = (ψ1(t), . . . , ψk(t)),

where {ψ1, . . . , ψk} is a linear independent set of scalar functions, the convex hull co(F (Ω)) is precisely
the set of vectors (m1, . . . ,mk) composed of the generalized moments

mi =

∫
Ω
ψi(s) dµ(s) ∀ i = 1, . . . , k,

of every probability measure µ with respect to the function set {ψ1, . . . , ψk}. From this standpoint, to
describe the convex set co(F (Ω)), we need to solve the problem of moments for the basis {ψ1, . . . , ψk}.
This is a classical problem, which is well known for a wide class of standard bases, such as the algebraic
system of integer exponents and the trigonometric system of complex exponents. In this work, we show
how the global minima of different kinds of functions can be analyzed by using known results on the
problem of moments (see [17] for an interesting review of the most important topics within the problem
of moments). Modern views on this matter can be found in [3, 12]. In addition, Shor’s work on positive
polynomials [16, Chap. 9] stretches the span of methods proposed here.

In Sec. 3, we describe some relevant results on the theory of moments, which are used in Sec. 4
for the analysis of global minima of polynomials. Indeed, as an illustration of the general method, we
consider the special case in which the function f is a polynomial and hence it can be expressed as a linear
combination of simpler functions:

f =
∑
i

ci ψi, (1.3)

where the function basis {ψi} can be the algebraic system ψi = ti or the trigonometric system ψi = ejit.
Thus, every integral in (1.1) can be expressed as∫

Ω
f(s) dµ(s) =

k∑
i=1

cimi,

where m1, . . . ,mk are the moments of the measure µ. Therefore, relaxed problem (1.1) can be posed as
the programming problem

min
mi

k∑
i=1

cimi, (1.4)

where the variables m1, . . . ,mk must be restricted to be the moments of some probability measure.
Since relaxed problem (1.1) is equivalent to the global minimization of the function f in Ω, we hope that
programming problem (1.4) also yields the global minima for f . This idea is developed in Sec. 4 for general
algebraic polynomials, general trigonometric polynomials, and bidimensional two-degree polynomials.

In this paper, we clarify how the solutions for programming problem (1.4) can provide the global
minima for general objective function (1.3). Indeed, we show nontrivial necessary and sufficient conditions
to characterize the global minima of (1.3) which involve the solutions of optimization problem (1.4).
To attain this goal, we must analyze the equivalence between relaxed problem (1.1) and programming
problem (1.4). As a particular case, we can characterize the global minima of polynomials by solving
convex optimization problems like (1.4) whose variables m1, . . . ,mk are the entries of certain positive
semidefinite matrices.

These kind of problems are called semidefinite programming problems since they are convex problems
whose constraints are given by linear matrix inequalities. These problems arose in control theory, and
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many standard optimization problems can be recast as semidefinite problems. During the last decade,
extensive research activity on the theory, applications, and numerical methods for these kinds of op-
timization problems took place. In addition, there exist many algorithms and routines to solve them
(see [6,7,13,16]).

2. The General Theory of The Method of Moments

Let f : Ω→ R be a continuous function defined on a subset Ω of the Euclidean space Rv. Our goal
is to characterize the global minima of the function f in Ω. This means that we search for points t0 such
that

f(t0) ≤ f(t) ∀ t ∈ Ω.

In order to find these points, we can change the analysis of the optimization problem

min
t∈Ω
f(t) (2.1)

and study the relaxed problem

min
µ∈Pr(Ω)

∫
Ω
f(s) dµ(s), (2.2)

where Pr(Ω) represents the family of all probability measures supported in Ω. Next, we present some
facts about the equivalence between problems (2.1) and (2.2).

If c is a lower bound for f in Ω, then

c ≤

∫
Ω
f(s) dµ(s)

for every probability measure µ supported in Ω. Taking the Dirac measure v = δt, we obtain

f(t) =

∫
Ω
f(s) dv(s)

for every t ∈ Ω. Therefore, we have proved that

inf
t∈Ω
f(t) = inf

µ∈Pr(Ω)

∫
Ω
f(s) dµ(s). (2.3)

This result implies the following proposition.

Proposition 1. If G is the set of global minima for f in Ω, then every probability measure supported in
G solves relaxed problem (2.2). Conversely, if the probability measure µ∗ satisfies the condition∫

Ω
f(s) dµ∗(s) = min

µ∈Pr(Ω)

∫
Ω
f(s) dµ(s), (2.4)

then every point in the support of µ∗ is a global minimum for f in Ω.

Proof. It is easy to see that
f(s) = min

t∈Ω
f(t) ∀ s ∈ G,

hence ∫
Ω
f(s) dµ∗(s) =

∫
G
f(s) dµ∗(s) = min

t∈Ω
f(t)

∫
Ω
dµ∗(s) = min

µ∈Pr(Ω)

∫
Ω
f(s) dµ(s)

for every probability measure µ∗ supported in G. On the other hand, we have

f(s) ≥ min
t∈Ω
f(t) ∀ s ∈ Ω;

therefore, ∫
Ω
f(s) dµ(s) ≥ min

t∈Ω
f(t)
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for every probability measure µ whose support is contained in Ω. If there exists some point s0 in the
support of µ such that

f(s0) > min
t∈Ω
f(t),

then ∫
Ω
f(s) dµ(s) > min

t∈Ω
f(t)

and hence µ could not satisfy (2.4). �
These results show that there exists a theoretical equivalence between minimization problem (2.1)

and relaxed problem (2.2). Now we endeavor to make such an equivalence explicit and useful.

2.1. Linear function decomposition. Assume that the objective function f : Ω→ R can be decom-
posed as

f = g ◦ F, (2.5)

where the function g is linear and the function F is continuous. Thus, every integral in relaxed problem
(2.2) satisfies ∫

Ω
f(s) dµ(s) =

∫
Ω
g(F (s)) dµ(s) = g

(∫
Ω
F (s) dµ(s)

)
.

On the other hand, it is easy to see that every integral∫
Ω
F (s) dµ(s)

represents a point within the convex hull of the image of the set Ω under the function F ; therefore, we
have

inf
t∈Ω
f(t) = inf{g(x) : x ∈ co(F (Ω))}. (2.6)

Next, we explore the possibility for the new convex optimization problem

min{g(x) : x ∈ co(F (Ω))} (2.7)

to represent the original global optimization problem (2.1). It is very important to note that problem
(2.1) can be a highly nonconvex problem, whereas proposed problem (2.7) has a linear objective function
and a convex feasible set.

Proposition 2. Assume that x0 solves the optimization problem

min{g(x) : x ∈ co(F (Ω))}.

If there exist values λi ≥ 0 and points ti ∈ Ω such that

x0 = λ1F (t1) + · · · + λrF (tr)

with
r∑
i=1

λi = 1,

then all ti points are global minima for f in Ω.

Proof. Let µ∗ be the probability measure defined as

µ∗ =
r∑
i=1

λiδti ,

whose support is the set {t1, . . . , tr}. Then we have∫
Ω
f(t) dµ∗(t) = g

(∫
Ω
F (t) dµ∗(t)

)
= g(x0) = inf

t∈Ω
f(t).
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By (2.3), we conclude that µ∗ solves (2.2), and, by Proposition 1, we conclude that points t1, . . . , tr are
global minima for f in Ω. �
Proposition 3. Let x0 be an extreme point of the solution set of the optimization problem

min{g(x) : x ∈ co(F (Ω)). (2.8)

Then there exists (at least) one point t0 ∈ Ω such that

F (t0) = x0,

which is a global minimum for the function f in Ω.

Proof. Since x0 ∈ co(F (Ω)), there exist r points ti ∈ Ω such that

x0 =
r∑
i=1

λi F (ti), (2.9)

where λi ≥ 0 and
r∑
i=1
λi = 1. By Proposition 2, we know that every ti is a global minimum for f in Ω;

therefore, every xi = F (ti) is a solution for (2.8) and hence (2.9) shows that x0 is not an extreme point
of the solution set of (2.8) whenever r > 1. �
Remark. The previous results provide general nontrivial necessary and sufficient conditions for points t
to be global minima of the function f over the set Ω.

Corollary 1. A point t0 ∈ Ω is a global minimum for the function f in Ω if and only if it solves the
nonlinear equation system

F (t0) = x0,

where x0 is an extreme point of the solution set for optimization problem (2.8).

Proof. This follows from Proposition 3. �
Corollary 2. The solutions of the nonlinear equations in λi and ti variables, given by the expression

λ1F (t1) + · · ·+ λrF (tr) = x0 (2.10)

subject to the constraints

λi ≥ 0,
r∑
i=1

λi = 1,

where x0 is a solution for optimization problem (2.8), provide all the global minima for f in Ω.

Proof. Since F (Ω) ⊂ Rk, it suffices to take r = k + 1 in order to satisfy Eq. (2.10). Next, we apply
Proposition 2 to conclude that ti are global minima for f in Ω. Reciprocally, if t1, . . . , tr are global minima

for f in Ω, it is easy to show that x0 =
r∑
i=1
λiF (ti), where λi ≥ 0 and

r∑
i=1
λi = 1, is a minimum for g(x) in

co(F (Ω)). �

2.2. Explicit description by moments. So far we have seen that we can characterize the global
minima of the objective function f by solving the optimization problem

min{g(x) : x ∈ co(F (Ω))}. (2.11)

It is very important to note that problem (2.11) has the following features, which are very useful in
optimization:

(1) problem (2.11) has linear objective function g;
(2) problem (2.11) has convex feasible set co(F (Ω)).

3307



For these reasons, we would like to describe the convex feasible set co(F (Ω)) in order to solve
optimization problem (2.11) by using standard optimization techniques.

Linear-function decomposition (2.5) takes the explicit form

f(t) =
k∑
i=1

ciψi(t), (2.12)

where

F (t) = (ψ1(t), . . . , ψk(t))

is a continuous transformation defined in Ω ⊂ Rv with values in Rk, and the linear functional g is defined
by the relation

g(x1, . . . , xk) =
k∑
i=1

ci xi

in Rk. It is easy to see that the convex hull co(F (Ω)) of the image F (Ω) of the set Ω under the transfor-
mation F is composed of all vectors

(m1, . . . ,mk) ∈ R
k

such that

mi =

∫
Ω
ψi(s) dµ(s), i = 1, . . . , k,

where µ is some probability measure supported in Ω. Thus, the values m1, . . . ,mk are precisely the
generalized moments of the measure µ with respect to the function basis

{ψ1, . . . , ψk}.

The characterization of the values m1, . . . ,mk as the moments of some measure µ is an open question
in contemporary mathematics. This difficult task is called the problem of moments. Now, at this stage,
the connection between the problem of moments and the analysis of global extremes of linear combinations
such as (2.12) should be clear. Indeed, if we could find some convenient requirements for characterizing
the values m1, . . . ,mk as moments, then we could use them in order to pose optimization problem (2.11)
as the programming problem

min

{
k∑
i=1

cimi : values m1, . . . ,mk are the moments of some µ ∈ Pr(Ω)

}
.

This proposal has been successful for treating some families of polynomial global optimization problems.
In the next section, we review some essential facts about the problem of moments.

2.3. Trivial example. To illustrate the ability of the method to cope with nonconvex global optimization
problems, we consider the step function

f =
k∑
i=1

ciψi,

where

ψi(t) =

{
1 if t ∈ Ωi,

0 if t /∈ Ωi

is the characteristic function of the set Ωi and the sets Ωi form a partition of the set Ω in k disjoint
subsets. Note that the function f may be extremely nonconvex, in fact, it may be as bizarre as you can
imagine. Next, we see how the method of moments provides the global minima of the function f .
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It is very easy to see that the values m1, . . . ,mk are the moments of a probability measure, with
respect to the family of characteristic functions {ψ1, . . . , ψk}, if and only if mi ≥ 0 for i = 1, . . . , k and

k∑
i=1

mi = 1.

Using this simple characterization, we can pose the global optimization problem as the convex program

min
mi

k∑
i=1

cimi s.t. mi ≥ 0 and
k∑
i=1

mi = 1,

whose solution is trivially

m∗i =

{
1 if i = j,

0 if i 	= j

for i = 1, . . . , k, where
cj = min{c1, . . . , ck}.

Therefore, the global minima for f are points t ∈ Ω satisfying the conditions

ψj(t) = 1, ψi(t) = 0

for every i 	= j. Those are exactly the points t in Ωj as we have found from a simple analysis of the step
function f .

3. The Problem of Moments

The problem of moments has challenged the minds of some of the most famous mathematicians since
the 19th century. In fact, renowned scientists as Tchebyshev, Stieltjes, Markov, Hausdorff, M. Riesz, and
many others were involved in the study of different forms of this old problem, and they developed rich
theories around it and its connections with other fields such as mechanics and probability (see [17] for a
complete review on the problem of moments). We begin by providing a general description of the problem
of moments.

Given a set of functions ψ1, . . . , ψk defined in Ω ⊂ R
v and values m1, . . . ,mk , the problem of

moments consists of determining a positive measure µ such that

mi =

∫
Ω
ψi(s) dµ(s) ∀ i = 1, . . . , k, (3.1)

whenever it is possible. Thus, the problem of moments also includes the search for requirements in order
to characterize the values m1, . . . ,mk as a set of moments. Depending on the function basis ψ1, . . . , ψk
and the set Ω, the problem of moments can take different forms. For example, if ψi(t) = t

i is the algebraic
system and Ω = R, we refer to the problem of moments as the Hamburger moment problem. We also
review the following classical cases: the Stieltjes moment problem, in which ψi(t) = t

i and Ω = [0,∞),
the Hausdorff moment problem, where ψi(t) = t

i and Ω = [a, b], and the Toeplitz (trigonometric) moment
problem, in which ψi(t) = e

ijt and Ω = [−π, π). In addition, we explore the particular case of the
two-dimensional, two-degree algebraic moment problem, where

ψij(x, y) = x
iyj, 0 ≤ i+ j ≤ 2.

It is easy to see that vectors (m1, . . . ,mk) satisfying (3.1) form a convex coneM in Rk. Therefore,
we can see that the convex cone

P =

{
(c1, . . . , ck) ∈ R

k :
k∑
i=1

ci ψi(t) ≥ 0 ∀ t ∈ Ω

}
,

composed of all positive functions in the linear span of the basis ψ1, . . . , ψk, is the convex dual of M.
This observation explains why the classical approach to studying the problem of moments (3.1) involves
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the algebraic analysis of the positive functions in the cone P. Indeed, the same David Hilbert proposed,
at the beginning of the 20th century, the study of positive polynomials in the seventeenth problem of his
famous collection of mathematical problems for the new century (see [1,12,16,17]).

As an illustration, we consider the family P of all 2n-degree positive polynomials. It is well known
that a positive polynomial

q(x) =
2n∑
i=0

ci x
i

can be expressed as the sum of two squares of polynomials, i.e., this means that there exist two polynomials
A and B such that

q(x) = A(x)2 +B(x)2

whenever q(x) ≥ 0. Nesterov [12] devised a general frame, using standard linear algebra tools, to properly
describe the dual of convex cones P composed of positive functions which admit a representation as a
finite sum of squares. For example, since it is obvious that A and B polynomials belong to the span of
the algebraic system U = {1, x, . . . , xn}, we need (at least) the basis

V = {1, x, . . . , x2n}

to describe all possible products of functions in the linear span of U . Next, we define the linear transfor-
mation

Λ : R2n+1 →Mn+1 : a→ (ak+l)
n
k,l=0,

whereMn+1 represents the family of all (n+1)× (n+1) matrices. The values of the operator Λ are given
by the projections on the basis V of every product of two functions in the basis U , i.e.,

xk · xl = xk+l =
2n∑
i=0

δk+l,i x
i ∀ k, l = 0, 1, . . . , n;

therefore, in general,

Λ a (k, l) =
2n∑
i=0

δk+l,i ai = ak+l ∀ a ∈ R
2n+1.

In [12, Theorem 17.1], it was shown that vector a belongs to the dual of the convex cone P if and only if
Λ a is a positive semidefinite matrix. Hence, we conclude that any vector a belongs to the closure of the
moments cone

M =

{
(m0, . . . ,m2n) : mi =

∫
R

xidµ(x) ∀i = 0, . . . , 2n

}
if and only if the Hankel matrix

Λ a = (ak+l)
n
k,l=0

is positive semidefinite. Recall, from convex analysis, that the second convex dual of a convex cone W is
the closure of W [15].

The previous example shows the importance of the description of positive polynomials as a finite sum
of squares of polynomials for the problem of moments. However, Hilbert did show that it is not possible
to express every positive polynomial in several variables as a finite sum of squares of polynomials. This
characterization is possible only for some special classes of positive polynomials. This point is carefully
analyzed in Shor’s work on positive polynomials [16, Chap. 9]. In the remainder of this section, we review
some important results an the problem of moments. In the next section, we see how to apply them to
find the global minima of polynomial curves.
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3.1. Hamburger moment problem. If Ω = R and ψi(t) = t
i for i = 0, 1, . . . , 2n, the problem of

moments is called the Hamburger moment problem. It is well known that there exists a positive measure
with algebraic moments m0, . . . ,m2n if and only if the values mi form a positive semidefinite Hankel
matrix

H =



m0 m1 · · · mn
m1 m2 · · · mn+1
. . . . . . . . . . . . . . . . . . . . . . .
mn mn+1 · · · m2n


 .

I warn that this sentence applies only in a limit sense; for example, consider the matrix

H =


1 0 00 0 0
0 0 1


 ,

which is a positive semidefinite Hankel matrix, but it is not possible to find a positive measure with
algebraic moments

m0 = 1, m1 = 0, m2 = 0, m3 = 0, m4 = 1.

In other words, the previous sentence does characterize the closure of the convex set co(F (R)), where

F (t) = (1, t, t2, . . . , t2n) ∀ t ∈ R.

Below, we list some useful results on the Hamburger moment problem that we will need later.

Lemma 1 ([1]). If m0, . . . ,m2n are the algebraic moments of a positive measure, then the Hankel matrix
H = (mi+j)

n
i,j=0 is positive semidefinite.

Lemma 2 ([1]). If H = (mi+j)
n
i,j=0 is a positive definite Hankel matrix, then there exist many infinite

positive measures whose algebraic moments are m0, . . . ,m2n.

Lemma 3 ([9]). Let H = (mi+j)
n
i,j=0 be a positive semidefinite Hankel matrix. If H is not positive

definite, then there exists a unique positive measure whose algebraic moments of orders from 0 to 2n− 1
are m0, . . . ,m2n−1 and such that its 2n-order moment does not exceed m2n.

Remark. The previous lemma is a short version of Fisher’s theorem [16].

Definition. Given a Hankel matrixH = (mi+j)
n
i,j=0, we define the degree ofH as n+1 ifH is nonsingular;

otherwise, we define the degree of H as the smallest integer r such that 0 ≤ r ≤ n and

Dk = |mi+j|
k
i,j=0 = 0

for every k = r, . . . , n. In general, deg(H) ≤ rank(H). If H is nonsingular, then deg(H) = rank(H) =
n+ 1.

Proposition 4. Let H be a singular positive semidefinite Hankel matrix with degree r. Then Dk > 0 for
every k = 0, . . . , r − 1 and Dk = 0 for every k = r, . . . , n.

Remark ([8]). This result follows from a thorough analysis of the structure of Hankel matrices.

Lemma 4 ([3]). Let m0, . . . ,m2n be the first 2n + 1 algebraic moments of a positive measure µ. The
measure µ is supported in r ≤ n points if and only if the degree of the Hankel matrix H = (mi+j)ni,j=0
is r. Hence, the support of µ contains more than n points if and only if H is nonsingular.
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3.2. Trigonometric moment problem. Let Ω = [−π, π) and ψi(t) = ejit for i = −n, . . . , n, where j
stands for the imaginary unit. In this case, the problem of moments is known as the trigonometric moment
problem. There is a well-known result in probability called the Bochner theorem, which establishes that
m−n, . . . ,mn are the trigonometric moments of a positive measure supported in [−π, π) if and only if
they form a positive semidefinite Toeplitz matrix

T =



m0 m−1 · · · m−n
m1 m0 · · · m−n+1
. . . . . . . . . . . . . . . . . . . . . . . .
mn mn−1 · · · m0


 .

Some known results on the trigonometric moment problem are listed below. In the remainder of this
section, we assume that mi are complex numbers satisfying the Hermitian condition

m̄i = m−i ∀ i = 0, . . . , n. (3.2)

Bochner Theorem ([2]). The values m−n, . . . ,mn are the trigonometric moments of a positive measure
supported in [−π, π) if and only if the Toeplitz matrix T = (mi−j)ni,j=0 is positive semidefinite.

Lemma 5 ([3]). Let T = (mi−j)
n
i,j=0 be a positive semidefinite Toeplitz matrix with rank r ≤ n. Then

there exists a unique r-point supported measure whose trigonometric moments are m−n, . . . ,mn.

3.3. Stieltjes moment problem. In the case where Ω = [0,∞) and ψi(t) = ti is the algebraic basis
with i = 0, . . . , n, we refer to the moment problem as the Stieltjes moment problem. Now we list some
known classical results on the theory of this problem.

Lemma 6 ([14]). If the matrices

H = (mi+j)
n
i,j=0, K = (mi+j+1)

n−1
i,j=0 (3.3)

are both positive definite, then m0, . . . ,m2n are the algebraic moments of a positive measure supported in
[0,∞). On the other hand, if m0, . . . ,m2n are the algebraic moments of some positive measure supported
in [0,∞), then matrices H and K are positive semidefinite.

Lemma 7 ([14]). If the matrices

H = (mi+j)
n
i,j=0, K = (mi+j+1)

n
i,j=0

are both positive definite, then m0, . . . ,m2n,m2n+1 are the algebraic moments of some positive measure
supported in [0,∞). On the other hand, if m0, . . . ,m2n+1 are the algebraic moments of some positive
measure supported in [0,∞) , then matrices H and K are positive semidefinite.

Lemma 8 ([14]). If the matrices

H = (mi+j)
n
i,j=0, K = (mi+j+1)

n−1
i,j=0

are positive semidefinite, then there exists a positive measure supported in [0,∞) whose first 2n algebraic
moments are m0, . . . ,m2n−1 and such that its 2n-order algebraic moment does not exceed m2n.

Remark ([3]). The representation of m0, . . . ,m2n as the algebraic moments of some positive measure
supported in [0,∞) is unique if and only if the Hankel matrix H is singular.

Lemma 9 ([14]). If the matrices

H = (mi+j)
n
i,j=0, K = (mi+j+1)

n
i,j=0

are positive semidefinite, then there exists a positive measure supported in [0,∞) whose first 2n+1 algebraic
moments are m0, . . . ,m2n and such that its (2n+ 1)-order algebraic moment does not exceed m2n+1.

3312



Remark ([3]). The representation of m0, . . . ,m2n+1 as the algebraic moments of some positive measure
supported in [0,∞) is unique if and only if either the Hankel matrix H is singular or H is nonsingular
and the matrix K is singular.

3.4. Hausdorff moment problem. The problem of moments is called the Hausdorff moment problem
if Ω = [a, b] and the function basis is the algebraic system ψi(t) = t

i.

Lemma 10 ([14]). The values m0, . . . ,m2n are the algebraic moments of a positive measure supported
on the finite interval [a, b] if and only if the matrices

H = (mi+j)
n
i,j=0, K =

(
(a+ b)mi+j+1 − abmi+j −mi+j+2

)n−1
i,j=0

are positive semidefinite.

Lemma 11 ([14]). The values m0, . . . ,m2n+1 are the algebraic moments of a positive measure supported
on the finite interval [a, b] if and only if the matrices

L = (mi+j+1 − ami+j)
n
i,j=0, M = (bmi+j −mi+j+1)

n
i,j=0

are positive semidefinite.

Remark ([3]). If the Hankel matrixH is singular, then the representation ofm0, . . . ,m2n as the moments
of a positive measure supported in [a, b] is unique. The same applies to an even set of m0, . . . ,m2n+1.

3.5. Quadratic moment problem. In this kind of moments problem, we consider the family of func-
tions

ψi,j(x, y) = z̄
izj with 0 ≤ i+ j ≤ 2, (3.4)

where the real variables x and y are identified with the real and imaginary parts of the complex variable
z. A linear combination

f(x, y) =
∑
i,j

aij z̄
izj

of the functions ψi,j is real if and only if the coefficients aij are Hermitian, i.e.,

aij = aji.

Lemma 12 ([4]). The complex values mij are the moments of some positive measure supported in the
complex plane z, with respect to basis (3.4), if and only if the matrix

M =


m00 m01 m10m10 m11 m20
m01 m02 m11




is positive semidefinite.

It is easy to see that we can express every two-dimensional, two-degree polynomial as a linear com-
bination of complex functions in the basis{

z̄izj : 0 ≤ i+ j ≤ 2
}
;

therefore, we can use this result of moments theory to study the global minima of polynomial expressions
as ∑

0≤i+j≤2

cijx
iyj (3.5)

with real coefficients cij .
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Indeed, we can see that

z + z̄ = 2x,

z − z̄ = 2iy,

z2 − z̄2 = 4ixy,

2 z z̄ + z2 + z̄2 = 4x2,

2 z z̄ − z2 − z̄2 = 4y2.

Therefore,

1 = ψ0,0,

x =
1

2
ψ0,1 +

1

2
ψ1,0,

y = −
i

2
ψ0,1 +

i

2
ψ1,0,

xy =
i

4
ψ2,0 −

i

4
ψ0,2,

x2 =
1

2
ψ1,1 +

1

4
ψ0,1 +

1

4
ψ1,0,

y2 =
1

2
ψ1,1 −

1

4
ψ0,1 −

1

4
ψ1,0.

Thus, every two-dimensional, two-degree real polynomial (3.5) can be expressed as a (Hermitian) linear
combination of functions ψi,j of basis (3.4).

4. Analysis of Global Minima of Polynomials

In this section, we show how the theory of moments can help us to analyze global optimization
problems if the objective function is an algebraic or trigonometric polynomial. Indeed, we give a new
characterization of the global minima for some classes of polynomials. The essential point that we want to
emphasize is that we can obtain information about the global minima of nonlinear, nonconvex polynomials
from the solution of some equivalent convex program. Moreover, such a convex program belongs to
one particular class of convex programs that have been thoroughly studied in recent years, semidefinite
programs.

A semidefinite program is an optimization problem in which the objective function is a linear com-
bination

ctx = c1x1 + · · ·+ ckxk,

whose variables are constrained by a set of linear matrix inequalities. A linear matrix inequality is a
constraint expressed in the form

A0 + x1A1 + · · ·+ xkAk ≥ 0, (4.1)

whereA0, . . . , Ak is a given set of symmetric matrices and the symbol ≥ stands for the positive semidefinite
condition imposed on the left-hand side matrix in (4.1).

It is easy to see that these programs are convex. Indeed, they have a linear objective function and
a convex feasible set. However, it is very important to note that their feasible set is a convex cone. In
this sense, semidefinite programming is a generalization of the classical linear programming in which the
feasible set is the positive cone Rn+. Currently, there is active research on the theory and algorithms
for semidefinite programming. Some important concepts and tools have been developed around it. For
instance, consider the tremendous development on interior point methods and the introduction of self-
concordant barrier functions. It is not our purpose to explain the essentials of semidefinite programming
here; for an introductory review on this subject, see [18].
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4.1. Algebraic case. The first situation that we consider here is the analysis of the global minima of
polynomials defined on the real line. We show that it is possible to determine the global minima for
algebraic polynomials in the form

f(t) =
2n∑
i=0

ci t
i with c2n > 0 (4.2)

from the solution of one particular semidefinite program. Thus, the following theorem establishes that
the global minima of the optimization problem

min
t∈R
f(t) (4.3)

are equivalent to the minima of the programming problem

min
mi

2n∑
i=0

cimi, (4.4)

where the variables m0, . . . ,m2n are restricted to be the entries on a positive semidefinite Hankel matrix
H = (mi+j)

n
i,j=0 with m0 = 1. It is easy to see that the optimization problem given in (4.4) is a

semidefinite program because of the symmetry on the Hankel matrix

H =



m0 m1 m2 · · · mn
m1 m2 . . . . . . . . . . mn+1
m2 . . . . . . . . . . . . . . . . . . mn+2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mn mn+1 mn+2 · · · m2n


 .

Theorem 1. If µ∗ is a probability measure supported in the set of global minima of the polynomial f(t)
given in (4.2), then the algebraic moments of µ∗ solve program (4.4). On the other hand, if m∗1, . . . ,m

∗
2n

solve program (4.4), then there exists a unique probability measure µ∗ supported in the set of global minima
of the polynomial f(t) whose algebraic moments are m∗1, . . . ,m

∗
2n.

Proof. Let µ∗ be a convex combination of points in the set of global minima of f(t) and let m∗1, . . . ,m
∗
2n

be its algebraic moments. Observe that we are considering µ∗ as a probability measure supported in
the real line. Given an arbitrary set of values m1, . . . ,m2n, which form a positive semidefinite Hankel
matrix H = (mi+j)

n
i,j=0 with m0 = 1, we can find a measure µ such that its first 2n algebraic moments

are 1,m1, . . . ,m2n−1 and such that its 2n-order moment does not exceed m2n. That is the meaning of
Lemma 3. Therefore, we have

2n∑
k=0

ckm
∗
k =

∫
R

f(s) dµ∗(s) ≤

∫
R

f(s) dµ(s) ≤
2n∑
k=0

ckmk, (4.5)

where the first inequality is implied by Proposition 1 and the assumption on the support of µ∗. The
second inequality in (4.5) is implied by the positivity of the higher coefficient c2n of the polynomial f(t).
In this way, we have shown that values m∗1, . . . ,m

∗
2n solve semidefinite program (4.4).

Conversely, if m∗1, . . . ,m
∗
2n solve semidefinite program (4.4), then we can find a unique probability

measure µ̄ whose first 2n algebraic moments are 1,m∗1, . . . ,m
∗
2n−1 and such that its 2n-order moment

does not exceed m∗2n. This is true by Lemma 3 and the fact that the Hankel matrix H
∗ = (m∗i+j)

n
i,j=0

cannot be positive definite. Indeed, if H∗ is positive, then all the determinants

Dk = |m
∗
i+j |

k
i,j=0

are positive for k = 0, . . . , n. Thus, m∗1, . . . ,m
∗
n do not belong to the boundary of the feasible set;

therefore, they cannot be the solution for semidefinite program (4.4). Now we see that the 2n-order
moment of the measure µ̄ is m∗2n. If this is not the case, then the moments of measure µ̄ are a better
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choice for problem (4.4). This contradicts the assumption about the values m∗1, . . . ,m
∗
2n. Finally, given

any probability measure µ supported in the real line, its algebraic moments m1, . . . ,m2n form a positive
semidefinite Hankel matrix H = (mi+j)

n
i,j=0 with m0 = 1. Thus,∫

R

f(s)dµ̄(s) =
2n∑
k=0

ckm
∗
k ≤

2n∑
k=0

ckmk =

∫
R

f(s)dµ(s),

where the inequality follows from the assumption about the values m∗1, . . . ,m
∗
2n. Proposition 1 implies

that the measure µ̄ is supported on the set of global minima of the polynomial f(t) in (4.2). �

Remark. The previous theorem also establishes the equivalence between the relaxed problem

min
µ∈Pr(R)

∫
R

f(s) dµ(s) (4.6)

and semidefinite program (4.4) in the following sense.

Corollary 3. The algebraic moments of every solution µ∗ for (4.6) solve (4.4). For every solution
m∗1, . . . ,m

∗
2n of problem (4.4), there exists a unique probability measure µ

∗ with algebraic moments
m∗1, . . . ,m

∗
2n, which solves (4.6).

Corollary 4. Let m∗1, . . . ,m
∗
2n be a solution of problem (4.4) and r be the degree of the Hankel matrix

H∗ = (m∗i+j)
n
i,j=0 with m

∗
0 = 1. Then polynomial (4.2) has at least r global minima.

Proof. Let µ∗ be the unique measure with moments 1,m∗1, . . . ,m
∗
2n. Then, by Lemma 4, we can see that

µ∗ has r supporting points. Therefore, f(t) has at least r global minima. �

Corollary 5. If polynomial f(t) in (4.2) has k global minima, then the set of solutions for semidefinite
program (4.4) is a k-simplex in R2n.

Proof. Assume that {t1, . . . , tk} is the set of global minima of polynomial f(t) in (4.2). Let m
∗
1, . . . ,m

∗
2n

be a solution of semidefinite program (4.4). Then there exists a unique probability measure µ∗ whose alge-
braic moments are m∗1, . . . ,m

∗
2n. Moreover, the support of µ

∗ is composed of some points in {t1, . . . , tk};
therefore, the moments m∗1, . . . ,m

∗
2n can be described as a convex combination of the moments of the

Dirac measures δt1 , . . . , δtk . Now we must show that the moments of the Dirac measures δt1 , . . . , δtk are
linearly independent vectors in R2n. Since k ≤ n < 2n, it suffices to consider the Vandermonde matrix

V =



1 1 · · · 1
t1 t2 · · · tk
t21 t22 · · · t2k
. . . . . . . . . . . . . . . . . . . . .

tk−11 tk−12 · · · tk−1k




whose determinant equals
∏
i<j

(ti − tj). �

Corollary 6. Assume that {t1, . . . , tk} is the set of global minima of the polynomial f(t) given in (4.2).
Then the moments of the Dirac measures δt1 , . . . , δtk are the extreme points of the solution set for semi-
definite program (4.4).

Proof. Given the Dirac measure µ∗ = δti , where ti is a global minimum for f(t), we know, by Proposi-
tion 1, that µ∗ solves relaxed problem (4.6). If the algebraic moments ti, t

2
i , . . . , t

2n
i of µ

∗ can be expressed
as a convex combination of the other moments of the Dirac measures δt1 , . . . , δi−1, δi+1 . . . , δtk , that would
imply that the Vandermonde matrix V is singular. Since points t1, . . . , tk are distinct, the Vandermonde
matrix V is nonsingular. Thus, we conclude that moments ti, t

2
i , . . . , t

2n
i form an extreme point of the
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solution set for semidefinite program (4.4). Note that we have used implicitly the fact that k ≤ n < 2n.
�

Corollary 7. Let m∗1, . . . ,m
∗
2n be an extreme point of the solution set for semidefinite program (4.4).

Then m∗1 is a global minimum of the polynomial f(t) in (4.2).

Proof. This follows from Proposition 3. �

Corollary 8. If polynomial (4.2) has only one global minimum and m∗1, . . . ,m
∗
2n solve (4.4), then m

∗
1 is

the global minimum for f .

Proof. In this case, m∗1, . . . ,m
∗
2n is an extreme point of the solution set for (4.4). �

4.2. Trigonometric case. Now we analyze the global minima for curves given by trigonometric poly-
nomials of the form

f(t) =
n∑

i=−n

ci e
jit. (4.7)

In these cases, the polynomial f is real if and only if the complex coefficients ci are Hermitian, i.e.,

c̄i = c−i.

Since every complex exponential function ejit is 2π-periodic, it is obvious that our analysis refers to the
fundamental interval −π ≤ t < π. The next theorem shows how we can reduce this global optimization
problem to a semidefinite program. The method is very similar to the polynomial case studied above. We
see that the global minima for the optimization problem min

−π<t≤π
f(t) are equivalent to the minima of the

semidefinite program

min
mi

n∑
i=−n

cimi, (4.8)

where the variables mi are restricted to be the entries on a positive semidefinite Toeplitz matrix T =
(mi−j)

n
i,j=0 with m0 = 1.

Since variables m−n, . . . ,mn are complex, it is not completely clear why optimization problem (4.8)
is a semidefinite program. To clarify this point, we must take the real and imaginary parts of the values
m−n, . . . ,mn as a new set of real variables. Then objective function (4.8) can be expressed as a linear
combination of the new set of variables and the new feasible set becomes a convex cone in some Euclidean
space.

Theorem 2. Let µ∗ be a probability measure supported in the interval [−π, π) whose supporting points
are global minima for polynomial (4.7). Then the set of trigonometric moments m∗−n, . . . ,m

∗
n of the

measure µ∗ is a solution for optimization problem (4.8). On the other hand, if m∗−n, . . . ,m
∗
n solve problem

(4.8), then there exists a unique probability measure µ∗ with trigonometric moments m∗−n, . . . ,m
∗
n, whose

supporting points are global minima of polynomial (4.7) in the interval [−π, π).

Proof. Assume that µ∗ is a probability measure supported in some subset of the set of global minima of
the polynomial f(t) given in (4.7). We also assume that µ∗ is supported in the interval [−π, π). Given
any set of values m−n, . . . ,mn that forms a semidefinite Toeplitz matrix T = (mi−j)

n
i,j=0 with m0 = 1,

we know, by the Bochner theorem, that it is possible to find a probability measure µ supported in [−π, π)
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whose trigonometric moments are m−n, . . . ,mn. If m
∗
−n, . . . ,m

∗
n are the trigonometric moments of the

measure µ∗, we have

n∑
−n

cim
∗
i =

∫ π
−π
f(s) dµ∗(s) ≤

∫ π
−π
f(s) dµ(s) =

n∑
−n

cimi, (4.9)

where the inequality in (4.9) follows from Proposition 1. Finally, we conclude that values m∗−n, . . . ,m
∗
n

form a solution for program (4.8).
Conversely, if m∗−n, . . . ,m

∗
n is a solution for program (4.8), it is easy to show that the Toeplitz matrix

T ∗ = (m∗i−j)
n
i,j=0 is singular. Let r be the rank of matrix T

∗. By Lemma 5, we know that there exists a
unique probability measure µ∗ with trigonometric moments m∗−n, . . . ,m

∗
n, which is supported in r points

located on the interval [−π, π). Given any arbitrary probability measure µ supported in [−π, π), its
trigonometric moments m−n, . . . ,mn form a positive semidefinite Toeplitz matrix T = (mi−j)

n
i,j=0 with

m0 = 1. Since the values m
∗
−n, . . . ,m

∗
n solve (4.8), we have∫ π

−π
f(s)dµ∗(s) =

n∑
−n

cim
∗
i ≤

n∑
−n

cimi =

∫ π
−π
f(s)dµ(s).

Thus, measure µ∗ solves the relaxed problem

min
µ∈Pr([−π,π))

∫ π
−π
f(s) dµ(s) (4.10)

and, by Proposition 1, we conclude that the supporting points of µ∗ are global minima of the trigonometric
polynomial f(t) in [−π, π). �

Remark. The previous theorem also establishes the equivalence between relaxed problem (4.10) and
optimization problem (4.8).

Corollary 9. Let µ∗ be a solution for relaxed problem (4.10). Then the trigonometric moments of µ∗

solve (4.8). On the other hand, if the values m∗−n, . . . ,m
∗
n solve (4.8), then there exists a unique probability

measure µ∗ with trigonometric moments m∗−n, . . . ,m
∗
n, which solves (4.10).

Corollary 10. Let m∗−n, . . . ,m
∗
n be a solution for (4.8) and r be the rank of the Toeplitz matrix T

∗ =
(m∗i−j)

n
i,j=0. Then the polynomial f given in (4.7) has at least r global minima.

Proof. By Lemma 5, we know that there exists a unique measure µ∗ supported in r points whose
trigonometric moments are the values m∗−n, . . . ,m

∗
n. By Theorem 2, we know that the supporting points

of µ∗ are global minima for the polynomial f(t). �

Corollary 11. If the trigonometric polynomial f given in (4.7) has k global minima, then the set of
solutions of programming problem (4.8) is a k-simplex in R2n.

Proof. We use the new set of 2n real variables x1, . . . , xn; y1, . . . , yn, where

xi = Re(mi), yi = Im(mi)

for i = 1, . . . , n. Assume that {t1, . . . , tk} is the set of global minima for the polynomial f(t) in [−π, π).
Given a solution m∗−n, . . . ,m

∗
n for problem (4.8), there exists a unique measure µ

∗ with trigonometric
moments m∗−n, . . . ,m

∗
n, whose supporting points are global minima for f(t) in [−π, π). Therefore, the

values m∗−n, . . . ,m
∗
n can be expressed as convex combinations of the trigonometric moments of the Dirac

measures δt1 , . . . , δtk . Hence the real vector(
x∗1, . . . , x

∗
n; y

∗
1, . . . , y

∗
n

)
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can be expressed as a convex combination of k 2n-dimensional real vectors(
cos(t1), . . . , cos(nt1); sin(t1), . . . , sin(nt1)

)
, . . .(

cos(tk), . . . , cos(ntk); sin(tk), . . . , sin(ntk)
)
.

(4.11)

Next, we see that the set of vectors (4.11) is linearly independent. We can identify the real vectors (4.11)
in R2n with the set of complex vectors in Cn given as(

ejt1 , . . . , ejnt1
)
, . . . ,

(
ejtk , . . . , ejntk

)
.

Taking the Vandermonde-type matrix

V̄ =



z1 z

2
1 · · · z

k
1

z2 z
2
2 · · · z

k
2

. . . . . . . . . . . . . . .

zk z
2
k · · · z

k
k


 ,

where z1 = e
jt1, . . . , zk = e

jtk , it is easy to see that

det(V̄ ) = ej(t1+···+tk)
∏
i>j

(zi − zj).

Therefore, we conclude that the real vectors in (4.11) form a linearly independent set since points t1, . . . , tk
are distinct. �

Remark. In the previous argument, we implicitly used the fact that k ≤ n.

Corollary 12. Assume that {t1, . . . , tk} is the set of global minima of the trigonometric polynomial f(t)
given in (4.7). Then the trigonometric moments of the Dirac measures δt1 , . . . , δtk are the extreme points
of the solution set for semidefinite program (4.8).

Proof. We must take the real and imaginary parts of the trigonometric moments

mi =

∫ π
−π
ejitdδtl = e

jitl

for i = −n, . . . , n and l = 1, . . . , k. Next, we must follow the same argument given in Corollary 11. �

Corollary 13. If the values m∗−n, . . . ,m
∗
n form an extreme point of the solution set of program (4.8),

then the expression

t0 =

{
arccos(Re(m∗1)) if Im(m

∗
1) ≥ 0,

− arccos(Re(m∗1)) if Im(m
∗
1) < 0

(4.12)

gives one global minimum for f .

Proof. Expression (4.12) is the converse for

m∗1 =

∫ π
−π
ejt δto(t) dt = e

jt0 = cos t0 + j sin t0.

The remainder of the proof follows from Proposition 3. �
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4.2.1. One side bounded problems. Now we consider the optimization problem

min
t≥0
f(t), (4.13)

where the objective function is a polynomial of the form

f(t) =
k∑
i=0

ci x
i, ck > 0. (4.14)

In this kind of problem, we must analyze two different possibilities. The first one, when the polynomial f
has even degree k = 2n, and the second one, when the polynomial f has odd degree k = 2n+1. Next, we
will see that global minima for problem (4.13) can be characterized by using the solutions for a certain
semidefinite program.

If k = 2n, the global minima for problem (4.13) are equivalent to the minima of the optimization
problem

min
mi

2n∑
i=0

cimi, (4.15)

where the variables m0, . . . ,m2n are constrained by the positiveness on the Hankel matrices

H = (mi+j)
n
i,j=0, K = (mi+j+1)

n−1
i,j=0 (4.16)

withm0 = 1. It is easy to see that the optimization problem given in (4.15) is a semidefinite program. The
next theorem shows that program (4.15) is equivalent to the finding of the global minima of polynomial
(4.14) for t ≥ 0 and k = 2n.

Theorem 3. Assume that k = 2n. Let µ∗ be a probability measure supported in [0,∞), whose supporting
points are global minima of the polynomial f(t) in [0,∞). Then the algebraic moments m∗1, . . . ,m

∗
k of

measure µ∗ solve optimization problem (4.15). Conversely, if m∗1, . . . ,m
∗
k solve problem (4.15), then there

exists a unique probability measure µ∗ with algebraic moments m∗1, . . . ,m
∗
k, whose supporting points are

global minima for f(t) in [0,∞).

Proof. Using Lemmas 6 and 8, our assertion follows by the same arguments given in the proof of
Theorem 1. �

If k = 2n+1, the global minima for problem (4.13) are equivalent to the minima of the programming
problem

min
mi

2n+1∑
i=0

cimi, (4.17)

where the variables m0, . . . ,m2n+1 are constrained by the positiveness of the Hankel matrices

H = (mi+j)
n
i,j=0, K = (mi+j+1)

n
i,j=0 (4.18)

with m0 = 1. We stress that optimization problem (4.17) is a semidefinite program. The next theorem
shows that it is equivalent to the finding of the global minima in [0,∞) of polynomial (4.14) if it has odd
degree k = 2n+ 1.

Theorem 4. Assume that k = 2n+1. Let µ∗ be one probability measure supported in [0,∞), whose sup-
porting points are global minima of the polynomial f(t) in [0,∞). Then the algebraic moments m∗1, . . . ,m

∗
k

of measure µ∗ solve optimization problem (4.17). Conversely, if m∗1, . . . ,m
∗
k solve problem (4.17), then

there exists a unique probability measure µ∗ supported in [0,∞), with algebraic moments m∗1, . . . ,m
∗
k,

whose supporting points are global minima for f(t) in [0,∞).
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Proof. Using Lemmas 7 and 9, our assertion follows by the same argument that we used in the proof of
Theorem 1. �

4.2.2. Bounded Problems. Now we consider global optimization problems

min
a≤t≤b

f(t),

where f is a polynomial of the form

f(t) =
k∑
i=0

ci t
i, ck 	= 0. (4.19)

Again, we can characterize global minima for f in [a, b] using certain equivalent semidefinite program.
The global minima for polynomial (4.19) with even degree k = 2n on the interval [a, b] are equivalent

to the minima of the semidefinite programming problem

min
mi

2n∑
i=0

cimi, (4.20)

where the variables m1, . . . ,m2n are restricted to be the entries in the positive semidefinite Hankel-type
matrices

H = (mi+j)
n
i,j=0, K =

(
(a+ b)mi+j+1 − abmi+j −mi+j+2

)n−1
i,j=0

with m0 = 1. Now it should be obvious to the reader how to prove this equivalence by using the content
of Lemma 10.

We can obtain a similar result for the case where the polynomial f in (4.19) has odd degree k = 2n+1.
In this case, the global minima for polynomial (4.19) with even degree k = 2n + 1 on the interval [a, b]
are equivalent to the minima of the programming problem

min
mi

2n+1∑
i=0

cimi, (4.21)

where the variables m1, . . . ,m2n+1 are restricted to be the entries in the positive semidefinite Hankel-type
matrices

H =
(
mi+j+1 − ami+j

)n
i,j=0
, K =

(
bmi+j −mi+j+1

)n
i,j=0

with m0 = 1. The reader should be able to use Lemma 11 in order to prove this equivalence.

4.2.3. Bidimensional Problems. Despite its elementary nature, the (global) minima for two-dimensional,
two-degree real polynomials

f(x, y) =
∑

0≤i+j≤2

cijx
iyj

can be characterized by the semidefinite program

min
mij

∑
0≤i+j≤2

aijmij s.t.


m00 m01 m10m10 m11 m20
m01 m02 m11


 ≥ 0, (4.22)

where the coefficients aij come from the representation of polynomial f in the complex system z̄
izj , i.e.,

f(x, y) =
∑

0≤i+j≤2

aij z̄
izj. (4.23)

In this situation, the variables mij are Hermitian complex variables; therefore, we can use their real and
imaginary parts as a new set of real variables for the optimization problem. In this new setting, we
conserve the essentials of semidefinite programming, i.e., a linear objective function and one particular
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convex cone as the feasible set. Lemma 12 allows us to characterize the global minima of the bidimensional
polynomial in (4.23) from the solution set for semidefinite program (4.22).

5. Measure Recovery

The first goal of the problem of moments is to find a measure µ from the set of its moments

mi =

∫
Ω
ψi(s) dµ(s)

with respect to the function basis ψ1, . . . , ψk. In the previous sections, we established the relationship
between the global minima of the linear combination

f =
k∑
i=1

ciψi, (5.1)

the relaxed problem

min
µ∈Pr(Ω)

∫
Ω
f(s) dµ(s), (5.2)

and the convex program

min
mi

k∑
i=1

cimi. (5.3)

In fact, Theorems 1–4 claim that the solution of program (5.3) corresponds to the moments of a probability
measure, which solves relaxed problem (5.2). On the other hand, Proposition 1 claims that the supporting
points of the solution of relaxed problem (5.2) are global minima for linear combination (5.1). Therefore,
it seems natural to use the optimum moments m∗1, . . . ,m

∗
k of problem (5.3) to obtain the global minima

of function (5.1). This suggestion works very well in the cases studied before.

5.1. Algebraic case. Given a positive semidefinite Hankel matrix H = (mi+j)
n
i,j=0 of degree r ≤ n,

we know, by Lemma 3, that there exists a unique positive measure µ whose algebraic moments are
m0, . . . ,m2n−1 such that its 2n-order moment does not exceed m2n. It is well known in the theory of
moments [9] that the polynomial

P (x) =

∣∣∣∣∣∣∣∣
m0 m1 · · · mr
. . . . . . . . . . . . . . . . . . . . . . .
mr−1 mr · · · m2r−1
1 x xr

∣∣∣∣∣∣∣∣
has r different real roots which are the supporting points of the measure µ. Thus, we obtain the following
result.

Theorem 5. Given a polynomial

f(t) =
2n∑
k=1

ci t
i (5.4)

with c2n > 0, assume that the values m
∗
1, . . . ,m

∗
2n solve the semidefinite program

min
mi

2n∑
i=1

cimi,
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where the variables m1, . . . ,m2n form a positive semidefinite Hankel matrix H = (mi+j)
n
i,j=0 with m0 = 1.

If m∗1, . . . ,m
∗
2n form a Hankel matrix H

∗ = (m∗i+j)
n
i,j=0 of degree r, then the roots of the polynomial

P ∗(x) =

∣∣∣∣∣∣∣∣
1 m∗1 · · · m∗r
. . . . . . . . . . . . . . . . . . . . . . .
m∗r−1 m

∗
r · · · m

∗
2r−1

1 x xr

∣∣∣∣∣∣∣∣
(5.5)

are global minima of polynomial (5.4).

It is interesting to note that the classical method of finding the local minima of a polynomial is to
estimate the roots of its derivative, which in turn is also a polynomial. Here we propose that the roots of
the polynomial (5.5) provide the global minima of original polynomial (5.4).

5.2. Trigonometric case. Let T = (mi−j)
n
i,j=0 be a positive semidefinite Toeplitz matrix with rank

r ≤ n. It was shown [3] that the submatrix Tr−1 = (mi−j)
r−1
i,j=0 is nonsingular. If we take the r-dimensional

vector (a0, . . . , ar−1) as the solution of the linear system

m0 m−1 · · · m−r+1
m1 m0 · · · m−r
. . . . . . . . . . . . . . . . . . . . . . . . . .
mr−1 mr−2 · · · m0





a0
a1
...
ar−1


 =



m−r
m−r+1
...
m−1


 ,

then it can be shown [3] that the set of roots of the polynomial

P (z) = zr − a0 − a1z − · · · − ar−1z
r−1

contains the supporting points of the unique measure supported in [−π, π) with trigonometric moments
m−n, . . . ,mn. In this context, we identify the complex variable z = e

jt with points t on the interval
−π ≤ t < π. From these results, we can establish the following theorem.

Theorem 6. Given a trigonometric polynomial

f(t) =
n∑

i=−n

cie
ijt

with Hermitian coefficients, assume that the values m∗−n, . . . ,m
∗
n solve the program

min
mi

n∑
i=−n

cimi,

where the variables m−n, . . . ,mn form a positive semidefinite Toeplitz matrix T = (mi−j)
n
i,j=0 with m0 =

1. If m∗−n, . . . ,m
∗
n form a Toeplitz matrix T

∗ = (m∗i−j)
n
i,j=0 with rank r, then the roots of the polynomial

P ∗(z) = zr − a∗0 − a
∗
1z − · · · − a

∗
r−1z

r−1

are global minima of the trigonometric polynomial f(t) on the interval [−π, π), where the coefficients
a∗0, . . . , a

∗
r−1 are the solution of the linear system


1 m∗−1 · · · m∗−r+1
m∗1 1 · · · m∗−r
. . . . . . . . . . . . . . . . . . . . . . . . . .
m∗r−1 m

∗
r−2 · · · 1





a∗0
a∗1
...
a∗r−1


 =



m∗−r
m∗−r+1
...
m∗−1


 .

Proof. There exists a unique probability measure supported in [−π, π) with algebraic moments m∗−n,
. . . , m∗n, which is supported in r points (see Lemma 5). On the other hand, P

∗ has at most r zeros. �
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6. Conclusion

In this paper, we presented an alternative way of studying global optimization problems from the
standpoint of the theory of moments. There are many questions still to be solved completely, for example,
how to extend the method to higher dimensions and how to treat nonclassical moments problems. There
is work in progress to clarify these points. However, we hope these ideas will be a good source for research
and applications in the growing field of global optimization.

From another point of view, the essentials of the method of moments has been successfully applied to
another kind of optimization problems. Indeed, the method of moments also allows us to solve nonconvex
variational problems coming from elasticity models used in materials science and mechanical engineering
[10,11].
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