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Abstract We propose a general method to determine
the theoretical microstructure in one dimensional elas-
tic bars whose internal deformation energy is given by
non-convex polynomials. We use non-convex variational
principles and Young measure theory to describe the op-
timal energetic configuration of the body. By using con-
vex analysis and classical characterizations of algebraic
moments, we can formulate the problem as a convex op-
timal control problem. Therefore, we can estimate the
microstructure of several models by using non-linear pro-
gramming techniques. This method can determine the
minimizers or the minimizing sequences of non-convex,
variational problems used in one-dimensional, non-linear
elasticity.

Keywords alloys microstructure · Young measures
theory · non-convex variational principles · moments
problems · non-linear elasticity

1 Introduction

In this paper we deal with the mathematical analysis
and the numerical solution of variational principles that
describe the total energy of one-dimensional, elastic bod-
ies. The general form of these problems is given by the
following formulation:

min
u

∫ 1

0
{φ (x, u′) + ψ (x, u)} dx

s.t. u′ ≥ 0
u(0) = 0, u(1) = α

(1)

where the admissible function u : [0, 1] → R stands for
the displacement of every point x ∈ [0, 1] on a partic-
ular one-dimensional body settled in the interval [0, 1].
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Hence, u′ accounts for the unitary deformation along the
body. The functions φ and ψ stand respectively for the
potential of internal deformation energy and the poten-
tial energy of external forces. These energy potentials
may vary with the dimension x of the body. The posi-
tivity of the derivative u′ comes from the fact that we
can not expect negative deformations. The parameters of
the problem are the length of the body and the imposed
elongations at the edges of the body. Without loss of gen-
erality we choose them as 1 for the whole length; 0 for the
first boundary condition and α for the second boundary
condition. For an introduction to variational models in
elasticity see references (Antman 2004; Cherkaev 2000;
James 1979; Müller 1990, 1998; Pedregal 2000; Truski-
novsky and Zanzotto 1995, 1996). In order to determine
the existence of minimizers of the variational problem
(1), we select the Sobolev space H1,p

0 + g0, where p de-
pends on the particular potential φ and g0 comes from
the particular boundary conditions of the problem. In
our case we should take g0(x) = αx.

In this work we will carry out the analysis of gen-
eral models in the form (1), where the non-convex de-
pendence of φ in u′ can be described by a polynomial
expression like:

φ(x, λ) =
K∑

k=0

ck(x)λk, cK > 0, K > 1. (2)

To attain this goal we will use the corresponding gen-
eralized formulation of (1) in Young measures and their
corresponding representation as algebraic moments by
following the method of moments for non-convex vari-
ational problems. This method has been proposed in
(Egozcue et al 2001, 2003; Meziat 2001). A more the-
oretical approach with applications to optimal design
can be seen in (Bonnetier and Conca 1994). See (Aubert
and Tahraoui 1996; Balder 1995; Kinderlehrer and Pe-
dregal 1991, 1994; Pedregal 1997, 2000; Roubicek 1997;
Young 1980) for an introduction to the theory of Young
measures and its implications in non-convex variational
problems and non-linear, optimal design problems. Many
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other researchers have proposed alternative ways to solve
generalized problems in Young measures. However, they
do not consider the restrictions on the derivative of (1).
As instance see (Bartels and Roubicek 2004; Bonnetier
and Conca 1994; Carstensen and Plechac 1997; Carstensen
and Roub́ıcek 2000; Muñoz and Pedregal 2000; Nico-
laides and Walkington 1992; Pedregal 1995, 1996; Roubicek
1996).

The more important feature of the method proposed
here is its ability to analyse non-convex variational prob-
lems with constraints on the derivative like (1). In spite
of the limitation of the method to analyse cases in higher
dimensions, our approach works well in many interesting
models in one-dimensional, non-linear elasticity and it is
useful to face open questions in materials science.

This paper is organized as follows: in Section 2 we
will present the analysis of the problem (1) by using
standard techniques of Young measures and the classi-
cal Stieltjes Truncated Moment Problem which is well
suited to treat the constraints into the derivative given
in (1). In Section 3 we solve several examples by using
proper computational tools from non-linear mathemati-
cal programming. In Section 4 we present our results to
the light of physical concepts like elasticity theory, sta-
ble energy states of crystalline lattices, solid phases and
the development of microstructures in one-dimensional,
non-linear, elastic bodies. In the Appendix we present
the theory of the method by following previous ideas on
the theory of the method of moments stated in (Egozcue
et al 2001, 2003; Meziat 2001).

2 Analysis of the Problem by Using the
Moments of Young Measures

To analyze the variational problem (1), we state it in the
following form:

min
u

∫ 1

0
{Φ (x, u′(x)) + ψ (x, u(x))} dx

s.t. u(0) = 0, u(1) = α
(3)

where Φ is defined as:

Φ (x, λ) =
{

φ (x, λ) when λ ≥ 0
∞ otherwise (4)

and the admissible functions u are supposed to belong to
the Sobolev space H1,p

0 + g0. Here p ≤ K as imposed by
the growth of the polynomial φ. In this formulation we
can apply Young measures theory for non-convex varia-
tional problems (Pedregal 1997). Thus, we can transform
problem (3) into a new generalized problem defined in
sets of parametrized measures as:

min
v

∫ 1

0

{∫
R

Φ (x, λ) dµx (λ) + ψ (x, u)
}

dx

s.t. u′(x) =
∫

R
λ dµx(λ) for every x ∈ [0, 1]

u(0) = 0, u(1) = α

(5)

where every measure µx is a probability distribution sup-
ported in the real line R. The theory of Young mea-
sures claims that every generalized problem (5) always

has a minimizer, even if the original variational problem
(3) does not have any, see (Pedregal 1997). Moreover,
the generalized formulation (5) is a relaxation of (3) as
they share the same infimum value. Young measure so-
lutions of the generalized principle (5) provide informa-
tion about the existence of minimizers of the variational
problem (3) and the general behavior of its minimizing
sequences. Readers can see a good account on this theory
in the current literature: (Pedregal 1997) and (Roubicek
1997).

According to the definition of the function Φ in (4),
we can formulate (5) as

min
v

∫ 1

0

{∫∞
0

φ(x, λ) dµx(λ) + ψ (x, u)
}

dx

s.t.
support (µx) ⊂ [0,∞), u′(x) =

∫∞
0

λ dµx(λ)
for every x ∈ [0, 1] with u(0) = 0, u(1) = α

(6)

and we can use the polynomial form of φ given in (2)
in order to transform (6) into the following optimization
problem:

min
m

∫ 1

0

{∑K
k=0 ck(x)mk(x) + ψ (x, u)

}
dx

s.t. u′(x) = m1(x) for every x ∈ [0, 1]
u(0) = 0, u(1) = α

(7)

where the new control variable m ∈ RK+1 must belong
to the convex set M of vectors in RK+1 whose entries
are the algebraic moments of a probability measure sup-
ported in [0,∞). In order to characterize the variable
m as a vector of moments, we use the solution of the
classical Stieltjes Truncated Moment Problem (Akhiezer
1962; Curto and Fialkow 1991; Karlin 1966; Krein 1977;
Shohat and Tamarkin 1943). By using this classical re-
sult, we can define (7) as the following optimal control
problem constrained by matrix inequalities:

min
m

∫ 1

0

{
K∑

k=0

ck(x)mk(x) + ψ (x, u)
}

dx

s.t. u(0) = 0, u(1) = α,
u′(x) = m1(x),

H1(x) = (mi+j (x))
K
2

i,j=0 ≥ 0,

H2(x) = (mi+j+1 (x))
K
2 −1

i,j=0 ≥ 0
and m0(x) = 1 for every x ∈ [0, 1] when K is even.

(8)

Analogous expressions hold when K is odd by using the
Hankel forms:

H3 = (mi+j)
K−1

2
i,j=0 and H4 = (mi+j+1)

K−1
2

i,j=0 (9)

instead of H1 and H2 Hankel forms in (8). Herein the
reader should notice that all the ensuing results are valid
for odd K just by putting the forms H3 and H4 into the
places of the Hankel forms H1 and H2.

The essential feature of the optimal control problem
(8) is its convex structure in the control variable m. This
fact implies existence of minimizers. See (Fattorini 1999;
Milyutin and Osmolovskii 1998; Mordukhovich 1998; Muñoz
and Pedregal 2000). Moreover, its particular convex form
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Fig. 1 Estimated minimizer for problem (13).

is well suited to algorithms and software for non-linear,
convex mathematical programs. See (Bazaraa et al 1993;
Ben-Tal and Nemirovski 2001; Castillo et al 2001; Hoang
1997; Nesterov and Nemirovskii 1995; Pedregal 2003;
Renegar 2001). In the following section we will exploit
this fact when we present the numerical treatment of
these problems as a big convex mathematical program.

A remarkable feature of this approach is its ability to
cope with particular constraints on the derivative of the
admissible functions, i.e. u′ ≥ 0, avoiding new complex-
ities into the analysis of the problem. This is true be-
cause we can characterize sets of moments of probability
measures supported in intervals by matrix inequalities,
exactly in the same way that we do for the entire real
line. As instance consider the Stieltjes Truncated Mo-
ment Problem used here for probabilities supported in
the semi-axis u′ ≥ 0.

3 Practical Solution by Using Non Linear
Programming

In this section we show how determine both: minimizers
and minimizing sequences of (1). A detailed explanation
of these possibilities follows. When

µ∗x = δs(x) for every x ∈ [0, 1] (10)

the integration procedure

u∗(x) =
∫ x

0

s(r) dr (11)

defines a minimizer for (1) in the Sobolev space H1,p
0 +g0.

However, when there exist optimal parametrized mea-
sures supported in two points, i.e.:

µ∗x = p1(x)δs1(x) + p2(x)δs2(x) for every x ∈ I ⊂ [0, 1](12)

where I is a subinterval of [0, 1], p1(x) + p2(x) = 1 and
p1(x), p2(x) > 0 for every x ∈ I, the problem (1) may

lack of minimizers. Nevertheless, we can use the infor-
mation enclosed in every parametrized measure in (12)
to determine how an admissible function can decrease
the value of the functional in (1). We must carry out a
step-wise integration procedure by taking the slope of
the function from the values s1(x) and s2(x) according
to their respective probabilities: p1(x) and p2(x). Thus,
we obtain a sort of saw-tooth like graph on the inter-
val I. See (Chipot 1991; Chipot and Kinderlehrer 1988;
Chipot et al 1995; Pedregal 1997, 2000). To estimate ev-
ery parametrized measure µ∗x we solve the optimal con-
trol problem (8) by using a discrete model and standard
routines for non-linear programming via the AMPL mod-
elling language (Fourer et al 2002) and non-linear pro-
gramming algorithms like active-set type and trust re-
gions as described in (Bazaraa et al 1993; Castillo et al
2001; Conn et al 2000; More and Wright 1993).

i m1 m2 m3 m4 optimal measure
1 . . . 20 0.000 0.000 0.000 0.000 δ0.000

21. . . 50 0.833 0.693 0.577 0.481 δ0.833

Table 1 Optimal moments and optimal parametrized mea-
sures for problem 13.

3.1 Example 1

Consider the variational problem:

min
u

∫ 1

0

{ (
1− u′(x)2

)2 + u(x)2
}

dx

s.t. u(0) = 0, u(1) = 1
2

u′(x) ≥ 0 for every x ∈ [0, 1]
(13)

which is transformed into the optimal control problem:

min
m

∫ 1

0

{
(1− 2m2(x) + m4(x) + u(x)2

}
dx

s.t. u′(x) = m1(x),


1 m1(x) m2(x)
m1(x) m2(x) m3(x)
m2(x) m3(x) m4(x)


 ≥ 0 and

(
m1(x) m2(x)
m2(x) m3(x)

)
≥ 0

for every x ∈ (0, 1)
with u(0) = 0, u(1) = 1

2 .

(14)
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This optimization problem can be formulated as the
following convex mathematical program:

min
m

∆
N∑

i=1

(
1− 2m2(xi) + m4(xi)

+

(
∆

i∑
j=1

m1(xj)

)2 )

s.t.
N∑

i=1

m1(xi) = u(1)−u(0)
∆ = 1

2∆


1 m1(xi) m2(xi)
m1(xi) m2(xi) m3(xi)
m2(xi) m3(xi) m4(xi)


 ≥ 0 and

(
m1(xi) m2(xi)
m2(xi) m3(xi)

)
≥ 0 for every i = 1, . . . , N

with ∆ = 1
N ,

(15)

where the points xi = i
N for i = 1, . . . , N define a dis-

crete net of N points on the interval [0, 1].
By using non-linear programming, we obtain the op-

timal values m∗ (xi) on a particular discrete net of 50
points xi evenly distributed along the interval [0, 1]. See
results in Table 1. Next, we recover every parametrized
measure µ∗xi

from their algebraic moments 1, m∗
1 (xi),

m∗
2 (xi), m∗

3 (xi), m∗
4 (xi) . In Figure 1 we simulate the

behavior of a minimizing sequence. It is very important
to notice here that this figure has been constructed by
using the results obtained from the numerical compu-
tation and the procedure described above. Thus, we can
postulate that problem (13) might have a minimizer like:

u∗(x) =
{

0 when 0 ≤ x ≤ 0.4
0.833(x− 0.4) when 0.4 ≤ x ≤ 1.

(16)

Although we could use other methods for non-linear,
non-convex mathematical programs in the formulation
(1), we would succeed only in those cases which admit
minimizers. But this condition can not be certified a pri-
ori in general cases fitting (1). Thus, we point out an
important virtue of the method of moments proposed in
this work: it works well in arbitrary, non-convex, varia-
tional problems (1) whether they have or they have not
minimizers.

3.2 Example 2

Here we focus on the non-convex variational problem

min
u

∫ 1

0

{
f (u′(x)) + u(x)2

}
dx

s.t. u(0) = 0, u(1) = 1
2

u′(x) ≥ 0 for every x ∈ [0, 1]
(17)

where the potential f is given by the following non-
convex, four degree polynomial:

f(x) = x4 − 3x3 − 5x2 + 7x. (18)
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Fig. 2 Estimated minimizer for problem (17) with the po-
tential (18).
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Fig. 3 Plot of the 6th degree polynomial described by eq:
(21). The doted line is its convex envelope in [0,∞).

By solving the corresponding convex mathematical
program on a net of 50 points, we obtain the following
optimal parametrized measures:

µ∗xi
= δ0 for i = 1, ..., 41

µ∗xi
= δ2.78 for i = 42, ..., 50 (19)

and herein the minimizer shown in Figure 2. From these
results we infer the existence of a minimizer like:

u∗(x) =
{

0 when 0 ≤ x ≤ 0.82
2.78(x− 0.82) when 0.82 ≤ x ≤ 1.

(20)

3.3 Example 3

We solve here the variational problem (17) where f is
the non-convex, sixth degree polynomial

f(x) = x6 − 173
100

x4 +
23
50

x2 +
27
100

(21)
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Fig. 4 Estimated minimizer for problem (17) with the po-
tential (21).

which is shown in Figure 3 beside its convex envelope on
the semi-axis [0,∞). The discrete model for this problem
is the following convex program:

min
m

∆
N∑

i=1

(
27
100 + 23

50m2(xi)− 173
100m4(xi)

+m6(xi) +

(
∆

i∑
j=1

m1(xj)

)2



s.t.
N∑

i=1

m1(xi) = u(1)−u(0)
∆ = 1

2∆


m1(xi) m2(xi) m3(xi)
m2(xi) m3(xi) m4(xi)
m3(xi) m4(xi) m5(xi)


 ≥ 0 and




1 m1(xi) m2(xi) m3(xi)
m1(xi) m2(xi) m3(xi) m4(xi)
m2(xi) m3(xi) m4(xi) m5(xi)
m3(xi) m4(xi) m5(xi) m6(xi)


 ≥ 0

for every i = 1, . . . , N.

(22)

By taking a mesh of N = 50 points, we obtain the
optimal parametrized measures:
µ∗xi

= δ0 for i = 1, ..., 24
µ∗xi

= δ0.97 for i = 25, ..., 50 (23)

which provide the minimizer shown in Figure 4 and sug-
gest the existence of a minimizer with the form:

u∗(x) =
{

0 when 0 ≤ x ≤ 0.485
0.97(x− 0.485) when 0.485 ≤ x ≤ 1.

(24)

The following example shows that we can not always
expect existence of minimizers for non-convex variational
problems given in the general form (1).

3.4 Example 4

In this example we face the same kind of non-convex,
variational problem as we did in the previous example,
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Fig. 5 Minimizing sequence for problem (25), the dashed
line is u(x) = 1

2
x.

but we change slightly the external forces potential ψ.
Thus, we consider:

min
u

∫ 1

0

{
f (u′(x)) +

(
u(x)− 1

2x
)2

}
dx

s.t. u(0) = 0, u(1) = 1
2

u′(x) ≥ 0 for every x ∈ [0, 1]
(25)

where the function f is the sixth degree, non-convex
polynomial given in (21). By solving the corresponding
convex mathematical program over a discrete net of 50
points we obtain the following optimal Young measure
solution:

µ∗xi
= 0.484δ0 + 0.516δ0.97 for every i = 1, ..., 50 (26)

which entails oscillatory minimizing sequences like the
one shown in Figure (5). Since the optimal parametrized
measures are supported in two points all along the inter-
val [0, 1], the variational problem (25) lacks of minimizers
in the Sobolev space H1,6

0 + g0. In this case the oscilla-
tory behavior is promoted by the alternation between
two slopes: 0 and 0.97, which are preferred according
to the corresponding proportions 48.4% and 51.6% all
along the interval [0, 1]. The finer the size scale in which
this oscillation takes place, the lesser the value of the
functional in (25). This situation is illustrated in Figure
5.

At this point the reader should understand the dif-
ferent possibilities for non-convex variational problems
given in the general form (1): existence of minimizers,
lacking of minimizers and different kinds of oscillatory
behavior related to the non-convex form of the integrand
in (1). The approach presented in this work offers an
interesting frame for analyzing and understanding non-
linear phenomena present in one-dimensional, non-linear
elastic bodies. We discuss this subject in the following
section.
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4 Physical implications and conclusions

The non-linear elastic behavior of several materials has
very important implications in engineering and design,
for example consider the typical strain-stress graph for
low-carbon steels given in Figure 6 and the associated de-
formation energy potential in Figure 7. Since the stress in
Figure 6 can be identified with the derivative ∂φ

∂ε , then it
is clear that the deformation energy potential φ does not
have a convex dependence on the deformation u′ when
we consider materials with a non-linear, elastic behav-
ior. In this situation we can not apply neither the Di-
rect Method of the Calculus of Variations (Buttazzo and
Giaquinta 1998; Cesari 1983; Dacorogna 1989; Ekeland
and Temam 1999; Giaquinta 1996; Jost et al 1999; Ashby
1996; Cherkaev 2000; Hibbeler 1994; Ruoff 1973; Shack-
elford 1996) nor computational techniques of Mathemat-
ical Programming (Castillo et al 2001; More and Wright
1993) because they do not work well when the potential
φ lacks of convexity in the deformation variable ε = u′.
See (Ball 1977; Ekeland 1979; Mascolo and Schianchi
1983; Mordukhovich 1998; Muñoz and Pedregal 1998,
2000; Ornelas 2003; Pedregal 1997, 2000; Roubicek 1997;
Young 1942, 1980) for a review of the implications of con-
vexity in the existence of minimizers of variational and
optimal design problems.

From a physical point of view, the mechanical behav-
ior of a body, when stressed further than the elastic limit
of the material, is a complex phenomenon involving ge-
ometrical and physical properties of the atoms conform-
ing its crystalline lattice. When the material is charged
to such high stresses, it may take one between two kinds
of crystalline arrangements which correspond to two en-
ergetically stable configurations of the atoms of the ma-
terial. This microscopic transformation is reflected in the
size, kind and number of clusters in which the different
solid phases grow up inside the material; beside that,
we must consider some important macroscopic phenom-
ena like material fluence, hardening and finally cracking
and rupture. See (Ashby 1996; Ericksen 1980; Hibbeler
1994; Ruoff 1973; Shackelford 1996; Valencia 1998) for
a description of the physical changes of engineering ma-
terials subject to different load conditions. See (Antman
2004; Ball and James 1987, 1992; Battacharya 1991; Bat-
tacharya et al 1997; Bauman and Phillips 1990; Ericksen
1980, 1986; Fonseca 1985; Fonseca et al 1994; Friesecke
1994; James 1979; Kinderlehrer 1988; Kohn and Müller
1992, 1994; Lurie 1990; Müller 1990, 1997; Truskinovsky
and Zanzotto 1995; Otto and Kohn 1997) for a better
description of non-convex, variational principles as mod-
els for the mechanical and physical behavior of materials
in non-linear elasticity.

It is not our aim in this work to address the physical
nature of these processes. However, we strongly empha-
size that the mathematical and computational analysis
that we propose here for treating the variational problem
stated in (1), do provide important elements about the

0.1 0.2 0.3
Ε

50

ΣHΕL

Fig. 6 Solid line is the third degree polynomial fit of one
stress-strain curve for commercial steels. Experimental mea-
surements (shown here as discrete dots) have been taken from
(Hibbeler 1994).
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Fig. 7 Deformation energy potential (31) and its convex en-
velope.

energetic configuration of the body when we are study-
ing non-linear, elastic models. In short, we can determine
the internal microstructure of the material.

It has been recently proposed that Young measure
analysis is a good setting to study non-linear phenom-
ena such as the formation of microstructures in indus-
trial materials like low carbon steels for instance. See
(Carstensen and Plechac 1997; Carstensen and Roub́ıcek
2000; Luskin 1996; Matos 1992; Müller 1997, 1998; Nico-
laides and Walkington 1992; Nicolaides et al 1995; Pedre-
gal 1997, 2000; Roubicek 1995, 1996) for recent accounts
on the role of Young measures in non-linear elasticity
and materials science. See (Ashby 1996; Ball and James
1987, 1992; Ericksen 1980, 1986; James 1979; Kohn and
Müller 1992, 1994; Luskin 1996; Müller 1990; Otto and
Kohn 1997; Shackelford 1996; Truskinovsky and Zan-
zotto 1995; Valencia 1998) for a comprehensive treat-
ment of the physical features of microstructure in engi-
neering materials. We will use the method of moments
for calculating Young measure solutions of non-convex
variational problems used as models in non-linear elastic-
ity. The essentials of this application and some examples
follow.
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4.1 Convex envelopes and stable energetic
configurations

Let us focus on the non-convex nature of the deformation
energy potential φ and its convex envelope φc shown in
Figure 7. If we select a particular deformation amount
ε located between the points A and B, the convex en-
velope φc attains a lower energetic level for the same
deformation, that is

φc(ε) < φ(ε) for ε ∈ (Ax, Bx) = (0.106, 0.390). (27)

From a geometric point of view, we observe that the
point (ε, φc(ε)) on the graph of φc can be described as a
convex combination of the points A and B on the graph
of the function φ. That is

(ε, φc(ε)) = p1 (ε1, φ (ε1)) + p2 (ε2, φ (ε2))
= p1A + p2B

(28)

where p1 and p2 define a convex combination (i.e., p1, p2 >
0 and p1 + p2 = 1). This geometric information can be
turned into a very deep physical observation, which has
also been noticed previously by other authors (Ball and
James 1987, 1992; Carstensen and Roub́ıcek 2000; James
1979; Müller 1990, 1997, 1998).

1. As the body tries to minimize the overall potential
deformation energy φ, it prefers a combination of the
energy states A and B instead of the higher energetic
value φ(ε).

2. The convex combination (28) gives the proportions
in which the energy states A and B should be mixed
to produce the lowest energy value φc while still pro-
ducing the deformation ε.

Several design materials, as low carbon steels for ex-
ample, may exhibit two solid phases related to different
stable energetic configurations in their crystalline net. As
instance, consider the Body Cubic Centered (BCC) and
Face Centered Cubic (FCC) solid phases in commercial
steels (Ashby 1996; Hibbeler 1994; Shackelford 1996).
The way in which these solid phases spread along the
body has a strong influence into the mechanical proper-
ties of the material. Hence, we should determine the way
in which two different solid phases spread and mix along
the body to form a particular microstructure according
to the external charges acting upon the body. See (Müller
1990; Carstensen 2001; Müller 1997, 1998) for the con-
nection between Young measures and microstructures.

Let α and β be particular names for referring to each
one of the solid phases that the material can exhibit.
We assume that the solid phase α can be present in a
wide range of deformations but not in all of them; the
same is true for the solid phase β. It is easy to note
that a particular range of deformations can be attained
by a convenient mixing of solid phases α and β. It is
well known also, that high stress conditions instead of
produce higher deformations can cause a phase transi-
tion from α to β into the material. See (Bhadeshia 1987;
Shackelford 1996; Valencia 1998).

This observation can be easily represented into Fig-
ure 7, where the zone to the left of point A can be
related to the solid phase α and the zone to the right
of B can be related to the solid phase β. That means
that solid phase α is appropriate for low stress conditions
with low deformations, and solid phase β can withstand
higher stresses and develop higher deformations without
collapsing. This is just the case in FCC and BCC solid
phases in steels. From an energetic point of view, solid
phase α can store low levels of deformation energy while
solid phase β can store high levels of deformation energy.
Thus, the mixing of solid phases α and β in the proper
amounts allows the material to retain lesser levels of de-
formation energy. This mixing process should take place
precisely within the zone limited by the points A and B
on the graph of φ, just the zone where φ departs from
its convex envelope φc.

Since the convex combination (28) can be described
by using a probability distribution, i.e. :

(ε, φc(ε)) =
∫ ∞

0

(t, φ(t)) dµ∗(t)with µ∗ε = p1δε1+p2δε2 ,(29)

we can determine the theoretical microstructure of the
material from the parametrized measures µ∗x solving (5).
Thus, if µ∗x = δs(x) the material should develop a sin-
gle solid phase corresponding to the deformation ε =
s(x) in the potential φ(x, ε) at the point x. Otherwise,
µ∗x = p1(x)δs1(x) + p2(x)δs2(x) and the material should
mix the solid phases corresponding to the deformations
ε1 = s1(x) and ε2 = s2(x) at the point x, in the pro-
portions given by the values p1(x) for ε1 and p2(x) for
ε2.

4.2 Examples of physical models

In order to find general qualitative properties of non-
linear elastic bars, we will use the polynomial

∂φ(ε)
∂ε

= 6195.87ε3 − 4664.61ε2 + 1016.64ε (30)

as a rough representation of a typical non-linear strain-
stress curve of one industrial material. This polynomial is
shown as the continuous line in Figure 6. By elementary
integration we obtain the fourth degree polynomial

φ(ε) = 1548.97ε4 − 1534.87ε3 + 508.319ε2 (31)

which can be used as a model for the deformation energy
potential of the material. See Figure 7.

4.3 Example 5

Here we solve the variational problem

min
u

∫ 1

0

{
φ(u′) + u(x)2

}
dx

s.t. u′(x) ≥ 0 for every x ∈ [0, 1]
u(0) = 0, u(1) = 1

4 ,

(32)
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Fig. 8 Estimated minimizer for problem (32), the dashed
line is u(x) = 1

4
x.

where the non-convex, deformation energy potential φ
is given as the polynomial in (31) and shown in Figure
7. We remark that φ is a fourth degree polynomial used
as a rough model for the deformation energy potential
of low carbon steels. Thus, we can apply the method
of moments to analyse the non-convex formulation (32)
which is transformed into the following convex optimal
control problem:

min
m

∫ 1

0

{
c2m2(x) + c3m3(x) + c4m4(x) + u(x)2

}
dx

s.t. u′(x) = m1(x),


1 m1(x) m2(x)
m1(x) m2(x) m3(x)
m2(x) m3(x) m4(x)


 ≥ 0,

(
m1(x) m2(x)
m2(x) m3(x)

)
≥ 0,

for every x ∈ [0, 1]

(33)

with c2 = 508.319, c3 = −1534.87 y c4 = 1548.97. From
the numerical solution of (33) we conclude that the op-
timal parametrized measures are:

µ∗xi
= δ0.106 for i = 1, ..., 25

µ∗xi
= δ0.390 for i = 26, ..., 50 (34)

and herein that the problem (32) might has a minimizer
as the one shown in Figure 8. In this case there is no
mixing of solid phases in the body. Instead, the solid
phase α is developed into the zone

[
0, 1

2

]
and the solid

phase β is developed into the zone
(

1
2 , 1

]
. This is the best

energetic stable configuration for the variational model
(32).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

u(
x)

Fig. 9 Minimizing sequence for problem (35), the dashed
vertical line is u(x) = 1

4
x.

4.4 Example 6

By using the deformation energy potential φ given in
(31), we can solve the variational problem:

min
u

∫ 1

0

{
φ(u′) +

(
u(x)− 1

4x
)2

}
dx

s.t.
u′(x) ≥ 0 for every x ∈ [0, 1]
u(0) = 0, u(1) = 1

4

(35)

to obtain the Young measure solution:

µ∗xi
= 0.493δ0.106 + 0.507δ0.390 for every i = 1, . . . 50 (36)

from which we conclude that problem (35) lacks of min-
imizers in H1,4

0 +g0. Notwithstanding, we can determine
the general form of its minimizing sequences. See Fig-
ure 9. From these results, we can see that in this model
the mixing of solid phases α and β takes place in the
proportions 49.3% to 50.7% all along the body. Thus,
we find the best energetic configuration and therein the
most stable and predictable microstructure for the body.

4.5 Conclusions

In this work we propose a practical method called the
method of moments which is intended to determine op-
timal Young measures solving the generalized formula-
tion of (1) when the deformation energy potential φ is a
polynomial. In this way we determine either minimizers
or minimizing sequences of (1). On the other hand, we
can apply this method to study qualitative and quan-
titative features of models of energetic balances of one-
dimensional, non-linear elasticity problems given in the
form (1). Thus, we find the specific way in which two
solid phases combine to form the microstructure of the
body. This approach is enlightening when applied upon
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models of materials that exhibit fluence and hardening
owed to internal solid phase transitions as is the case in
several kinds of commercial steels.

5 Appendix: Theoretical Facts of the Method of
Moments

In this appendix we give the essentials of the theory of
moments when applied to non-convex variational prob-
lems with restrictions on the derivative like: (1). See
(Egozcue et al 2003).

Theorem 1 The minimum value of the optimal control
problem (8) coincides with the infimum of the variational
problem (1) when the potential φ has the form given in
(2).

Theorem 2 Let m∗ be a minimizer of the optimal con-
trol problem (8). Then, the entries of every vector m∗(x)
are the algebraic moments of the optimal parametrized
measure µ∗x within an optimal Young measure solving the
generalized formulation (5).

We briefly remark here on how the unicity of the
solution affects the analysis of the problem. There are
situations in which the variational formulation admits
several minimizers but its relaxation in moments admits
only one. As instance consider

min
u

∫ 1

0
{(1− u′(x)2)2}dx

s.t. u′ ≥ 0
u(0) = 0, u(1) = 0.5.

(37)

We analyze here situations in which the non-convex
variational formulation lacks of minimizers but its relax-
ation in moments admits one. This fact is owed to the
convex structure of the relaxation in moments and the
coercivity of φ at the integrand of the functional. Cer-
tainly, we can easily find particular cases in which the
relaxed formulation in moments admits several minimiz-
ers. Nonetheless, we never can expect lacking of minimiz-
ers in the relaxed formulation as it is its main purpose:
to give us a convex setting where we can calculate mini-
mizers.

5.1 Proofs of Theorems 1 and 2

The core of these proofs is the analysis of convex en-
velopes of polynomials f defined on the semi-axis [0,∞)
as has been recently proposed in (Ben-Tal and Nemirovski
2001; Egozcue et al 2001, 2003; Meziat 2003a,b). Essen-
tially, for an arbitrary point t ≥ 0 we must determine
points t1, t2 ≥ 0 and values p1, p2 ≥ 0 which make true
the following expression:

(1, t, fc(t)) = p1 (1, t1, f(t1)) + p2 (1, t2, f(t2)) (38)

whose integral form is:

(1, t, fc(t)) =
∫ ∞

0

(1, λ, f(λ)) dµ∗(λ) (39)

where

µ∗ = p1δt1 + p2δt2 (40)

and δt is a Dirac measure supported in t. By using convex
analysis, we can define µ∗ as the solution of the following
optimization principle:

fc(t) = min
µ

∫ ∞

0

f(λ) dµ(λ) (41)

where µ represents the family of all probability distribu-
tions supported in [0,∞) with mean t. See (Rockafellar
1970). If f can be described as a coercive polynomial
given in the general form:

f(t) =
K∑

k=0

cktk, cK > 0, K > 1 (42)

then we can transform the optimization problem (41)
into the semidefinite program:

min
m

K∑
k=0

ckmk

s.t. H1 = (mi+j)
K
2

i,j=0 ≥ 0,

H2 = (mi+j+1)
K
2 −1

i,j=0 ≥ 0
with m0 = 1,
and m1 = t

(43)

when K is even. An analogous result holds for odd K
by putting H3 and H4 Hankel matrices of (9) into the
places of H1 and H2 in (43). The following lemmas tell us
how to use convex optimization to solve the optimization
problem (41) and how to find the values ti and pi in (40).

Lemma 1 The solution m∗ of the semidefinite program
(43) is the vector formed by the first K + 1 algebraic
moments of the optimal measure µ∗ given in (40), which
solves the optimization problem (41) at the point t.

See (Meziat 2003a) for a proof of this lemma. Since µ∗

is supported in two points at most we can construct µ∗

in (40) by using its moments 1, t, m∗
2 and m∗

3 which can
be obtained by solving the semidefinite program (43).
This task can be carried out by using some algebra. See
(Akhiezer 1962; Curto and Fialkow 1991; Krein 1977).

Lemma 2 The convex envelope of the polynomial f in
(42) can be written as

fc(t) = min
m

K∑

k=0

ckmk (44)

where the feasible set for m is described in (43).
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See (Meziat (2003b)). As shown recently in (Dacorogna
1989; Pedregal 1997), the infimum value of the varia-
tional problem (1) coincides with the minimum of the
following convex relaxation:

min
u

∫ 1

0
{φc(x, u′) + ψ(x, u)} dx

s.t. u′(x) ≥ 0 for every x ∈ (0, 1)
u(0) = 0, u(1) = α

(45)

which must have a minimizer u. Therefore, by applying
Lemma 2 we have:
∫ 1

0
{φc (x, u′) + ψ (x, u)} dx =

min
m

∫ 1

0

{
K∑

k=0

ck(x)mk(x) + ψ (x, u)
}

dx
(46)

where the optimization process at the right hand is the
optimal control problem (8). Due to Lemma 1 and the ex-
pression (44) in Lemma 2, if the control function m∗(x)
satisfies the optimal control problem stated at the right
hand of (46), then the components of the vector m∗(x)
are the algebraic moments of the optimal parametrized
measure µ∗x. ¤
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(2001) Building and Solving Mathematical Program-
ming Models in Engineering and Science. Pure and Ap-
plied Mathematics: A Wiley-Interscience Series of Texts,
Monographs and Tracts, Wiley-Interscience

Cesari L (1983) Optimization - Theory and Applications:
Problems with Ordinary Differential Equations. Springer-
Verlag Berlin and Heidelberg

Cherkaev A (2000) Variatonal Methods for Structural Opti-
mization. Springer

Chipot M (1991) Numerical analysis of oscillations in non
convex problems. Numerische Mathematik 59:747–767

Chipot M, Kinderlehrer D (1988) Equilibrium configurations
of crystals. Archive for Rational Mechanics and Analysis
103:237–277

Chipot M, Collins C, Kinderlehrer D (1995) Numerical anal-
ysis of oscillations in multiple well problems. Numerische
Mathematik 70(3):259 – 282

Conn AR, Gould NIM, Toint PL (2000) Trust-Region Meth-
ods. Series on Optimization 1, Soc for Industrial & Ap-
plied Math

Curto RE, Fialkow LA (1991) Recursiveness, positivity, and
truncated moment problems. Houston Journal of Mathe-
matics 17(4):603

Dacorogna B (1989) Direct Methods in the Calculus of Vari-
ations (Applied Mathematical Sciences). Springer-Verlag

Egozcue JJ, Meziat R, Pedregal P (2001) The method of mo-
ments for non-convex variational problems. In: Hadjisav-
vas N, Pardalos PM (eds) Advances in Convex Analysis
and Global Optimization, Nonconvex Optimization and
its Applications, vol 54, Springer-Verlag, pp 371–382

Egozcue JJ, Meziat R, Pedregal P (2003) From a nonlinear,
nonconvex variational problem to a linear, convex formu-
lation. Applied Mathematics and Optimization 47(1):27
– 44

Ekeland I (1979) Nonconvex minimization problems. Bull
Amer Math Soc 1:443–475

Ekeland I, Temam R (1999) Convex Analysis and Variational
Problems, Classics in Applied Mathematics, vol 28. Soc.
for Industrial & Applied Math



11

Ericksen JL (1980) Some phase transitions in crystals. Arch
Rational Mech Anal 73:99–124

Ericksen JL (1986) Stable equilibrium configuration of elastic
crystals. Arch Rational Mech Anal 94:1–14

Fattorini HO (1999) Infinite Dimensional Optimization and
Control Theory. Encyclopedia of Mathematics and its Ap-
plications, G.-C. Rota (Series Editor), Cambridge Univer-
sity Press

Fonseca I (1985) Variational methods for elastic crystals.
Arch Rational Mech Anal 97:189–220

Fonseca I, Kinderlehrer D, Pedregal P (1994) Energy func-
tionals depending on elastic strain and chemical compo-
sitions. Calc Var Partial Differential Equations 2:283–313

Fourer R, Gay DM, Kernighan BW (2002) AMPL A Model-
ing Language for Mathematical Programming, 2nd edn.
Duxbury Press

Friesecke G (1994) A necessary and suficient condition for
nonattainment and formation of microstructure almost
everywhere in scalar variational problems. Proc Roy Soc
Edimburgh Sect A 124:437–472

Giaquinta M (1996) Calculus of Variations vol I and II.
Springer-Verlag Telos

Hibbeler RC (1994) Mechanics of materials, 2nd edn. Prentice
Hall

Hoang T (1997) Convex Analysis and Global Optimization,
Nonconvex Optimization and Its Applications, vol 22, 1st
edn. Kluwer Academic Publishers

James R (1979) Co-existent phases in the one-dimensional
static theory of elastic bars. Arch Rational Mech Anal
72:99–140

Jost J, et al (1999) Calculus of Variations (Cambridge Studies
in Advanced Mathematics). Cambridge University Press

Karlin S (1966) Tchebycheff systems: With applications in
analysis and statistics. Pure and applied mathematics,
Interscience Publishers

Kinderlehrer D (1988) Remarks about the equilibrium config-
uration of crystals. In: Ball JM (ed) Cont. Mech., Proc.
Symp. Material Inestabilities, Heriot-Watt, Oxford, pp
217–242

Kinderlehrer D, Pedregal P (1991) Characterization of young
measures generated by gradients. Arch Rational Mech
Anal 115:329–365

Kinderlehrer D, Pedregal P (1994) Gradient young measures
generated by sequences in sobolev spaces. J Geom Anal
4:59–90

Kohn R, Müller S (1992) Branching of twins near an austen-
tite/twinned martensite interface. Philos Mag A 66:697–
715

Kohn R, Müller S (1994) Surface energy and microstructure
in coherent phase transitions. Comm Pure Appl Math
47:405–435

Krein MG (1977) The Markov Moment Problem and Ex-
tremal Problems: Ideas and Problems of P.L. Ceby-Sev
and A.A. Markov and Their Further Development. Trans-
lations of mathematical monographs, Amer. Mathemati-
cal Society

Lurie AI (1990) Nonlinear Theory of Elasticity. North-
Holland, Amsterdam

Luskin M (1996) On the computation of crystalline mi-
crostructure. Acta Numerica 5:191–257

Mascolo E, Schianchi R (1983) Existence theorems for non-
convex problems. J Math Pures Appl 62:349–359

Matos J (1992) Young measures and the abscence of fine mi-
crostructures in a class of phase transitions. European J
Appl Math 3:31–54

Meziat R (2003a) Analysis of non convex polynomial pro-
grams by the method of moments. In: Floudas CA, Parda-
los PM (eds) Frontiers in Global Optimization, Noncon-
vex Optimization and its Applications, vol 74, Springer-
Verlag, pp 353–372

Meziat R (2003b) The method of moments in global optimiza-
tion. Journal of Mathematical Sciences 116(3):3303–3324

Meziat RJ (2001) El método de los momentos para proble-
mas variacionales no convexos. PhD thesis, Universidad
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