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Abstract

In this work we propose a particular method for analyzing non convex
variational problems given in in the general form:

min
u

∫ 1

0

f
(
x, y (x) , y′ (x)

)
dx

where the derivative of the admissible functions y is constrained by the
following ineqaulities:

α (x, y (x)) ≤ y′ (x) ≤ β (x, y (x)) for every x ∈ [0, 1] .

The method proposed here allows us to study general cases where the
integrand f admits a polynomial description in y′ without any assump-
tion about constraint functions: α and β. This method determines the
existence of minimizers, even in the cases where the integrand f lacks of
convexity. The method is based on the general theory of Young measures
and classical results on algebraic moments theory.
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min
u

∫ 1

0

f
(
x, y (x) , y′ (x)

)
dx

where the derivative of the admissible functions y is constrained by the
following ineqaulities:

α (x, y (x)) ≤ y′ (x) ≤ β (x, y (x)) for every x ∈ [0, 1] .

1



The method proposed here allows us to determine the existence of min-
imizers whenever the integrand f admits a polynomial description in y′.
It is remarkable that this method does not need any assumption about
the constraint functions: α and β and it also works well in those cases
in which the integrand f does not have a convex dependence in y′. The
analysis presented here is based on the general theory of Young measures
and classical results on algebraic moments theory.

1 Introduction

In this paper we will analyze the general family of one dimensional variational
problems given in the following form:

miny I (y (x)) =
∫ b

a
f (x, y (x) , y′ (x)) dx

s.t.
α (x, y (x)) ≤ y′ (x) ≤ β (x, y (x)) for every x ∈ [a, b]
and Boundary Conditions : y (a) = ya, y (b) = yb

(1)

where the admissible functions y are supposed to belong to a proper Sobolev
space according to the particular integrand f. We will study the variational
Problem 7 when the integrand f is given by the general expression

f (x, y, λ) =
n∑

k=0

ck (x, y) λk (2)

which means that f is an arbitrary algebraic polynomial in the derivative y′.
It is easy to see that constraint functions α and β must be integrable and they
should satisfy the condition∫ b

a

α (x) dx ≤ ub − ua ≤
∫ b

a

β (x) dx.

We do not use any else assumption about the constraint functions α and β.
In order to illustrate the essential features of this kind of optimization prob-

lems, we will use an elementary model given by

miny I (y) =
∫ 1

0

{
f (y′ (x)) + y (x)2

}
dt

s.t.
y′ ≤ 1

2
and y (0) = 0, y (1) = s .

(3)

where f is the fourth degree polynomial

f (t) =
(
1− t2

)2
which has two global minima at ±1. Thus, we are compelled to find a curve
y (x) going from point (0, 0) to point (1, s) , whose derivative y′ must minimize
the integral

∫ 1

0
f (y′ (x)) dx by choosing values not exceeding one half.
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At the same time, the same curve y should take smaller absolute values
along its way in order to minimize the integral

∫ 1

0
y (x)2 dx. However, it is not

completely clear when we can find such a curve. As instance, consider the case
when s = 1

2 , then the straight line y0 (x) = x
2 satisfies the boundary conditions

but it is not clear to us either if I (y0) is the least value among all curves y (x)
connecting point (0, 0) to point

(
1, 1

2

)
or not.

On the other hand, considering the case s = 0, we easily see that there is no
solution for the Problem 9 because we can exhibit a minimizing sequence for the
functional I by choosing highly oscillatory continuous curves which decrease the
value of the integral I but they never attain a minimum of I. The construction of
these curves proceeds in the following form: their slopes must take values from
−1 and 1

2 in the relative proportions 1 : 2 along the axis x. By constructing one
curve in this way, it should reach the point (1, 0) when starting from the point
(0, 0) . In addition, by following this construction we can see that the higher
the slope changes, the lesser the value of the integral I. In this way we have
obtained a minimizing sequence for the functional I.

One important question about this kind of problems is about the oscillatory
behavior of their minimizing sequences when they lack of minimizers. The
method proposed in this paper will help us to clarify what kind of oscillatory
behavior can we expect when the problem lacks of minimizers. This point has
very important practical implications in several models described by variational
principles like those given in the general form 7.

In order to analyze one particular non convex problem in the form 7 , we use
its generalized formulation in Young measures. See [Pe1997] for a good introduc-
tion to Young measures theory. In this reference, the author uses Young mea-
sures theory for describing weak convergence in Sobolev spaces, so he can also
apply it for analyzing non convex variational problems. Here we define the gen-
eralized formulation in Young measures of one particular derivative constrained
variational problem given in the form 7, as the new optimization problem

minν Ĩ (ν) =
∫ b

a

∫
R

f (x, y (x) , λ) dµx (λ) dx
s.t.
support (µx) ∈ [α (x) , β (x)] for every x ∈ [a, b]
and Boundary Conditions : y (a) = ya, y (b) = yb

(4)

which consists in determining a parametrized family of probability measures

ν = {µx : a ≤ x ≤ b}

that minimize the generalized functional Ĩ . In the generalized formulation 10
the link between y and ν is given by the following restriction:

y′ (x) =
∫

R

λ dµx (λ) . (5)

Thus, we can determine every appearance of y (x) in 10 by using the first moment
of every parametrized measure µx and the boundary conditions of the particular
problem.
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We will show the equivalence between Problem 7 and its generalized for-
mulation in Young measures given by the Problem 10. In fact we claim that
Problem 10 has a minimizer, that means that there exists an optimal Young
measure which attain a minimum for the generalized functional Ĩ . The infi-
mum of both problems are equal, that means that the minimum of Problem
10 equals the infimum of Problem 7. Furthermore, the supports of the opti-
mum parametrized measures of the generalized Problem 10 clarify the existence
of minimizers of the corresponding derivative constrained variational problem
7. Even if the constrained variational problem 7 does not have any minimizer
within its respective Sobolev space, we can find the essential features of the
oscillating behavior of their minimizing sequences by analyzing the supports of
the parametrized measures inside the optimal Young measure solution of their
corresponding generalized problem 10.

Now we settle the principal proposal of this work: as an alternative method
for carrying out the analysis of derivative constrained variational problems with
Young measures, we propose to use the algebraic moments of every parametrized
moments instead of use the probability measure itself. Thus, when the integrand
f of the general derivative constrained variational problem 7 has the polynomial
form given in 8, the corresponding generalized problem 10 can be posed in the
following way:

minm J (m) =
∫ b

a

∑n
k=0 ck (x, y (x)) mk (x) dx

s.t.
mk (x) =

∫
R

λkµx (λ)
support (µx) ∈ [α (x) , β (x)] for every x ∈ [a, b]
and Boundary Conditions : y (a) = ya, y (b) = yb

(6)

which is a new optimization problem whose variables mk (x) must be constrained
to be the algebraic moments of one probability measure µx supported on the
interval [α (x) , β (x)] . As we explained above, the appearances of y (x) in 12 can
be determined from the boundary conditions and the relation 11, which takes
now the simpler form:

y (x) = m1 (x)

where we have used the order-one algebraic moment of the parametrized measure
µx.

Now we remark that Problem 12 can be described as a convex optimal control
problem, because we can use classical results on moments theory for characteriz-
ing a set of values mk as the algebraic moments of a positive measure supported
on one particular interval of the real line. The most important fact about
this observation is that we can estimate the optimal parametrized measures for
Problem 10 by solving the Problem 12 with standard numerical procedures. In
addition, all the results about the generalized formulation 10 remain true when
applied to the new formulation in moments 12. In this way, we claim first that
the optimal control problem 12 has a solution, second that its minimum equals
the infimum of the corresponding derivative constrained problem 7. Finally, we
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also claim that the optimal values of the Problem 12 allow us to find the op-
timal parametrized measures which solve the generalized problem 12, which in
turn clarify either or not the Problem 7 has minimizers within its corresponding
Sobolev space. We remind that the optimal Young measure obtained from the
solution of the Problem 12 describes the oscillatory behavior of the minimizing
sequences of the Problem 7 when it has no minimizer.

The present paper is organized as follows. In Chapter 2 we apply Young’s
theory of generalized curves to the family of derivative constrained variational
problems like those described in Problem 7. Then we apply Young measures the-
ory for analyzing this kind of problems. In Chapter 3 we describe the Method
of Moments for analyzing generalized problems in the form 10 and we also
analyze the Problem 12 by using classical results from algebra like the fa-
mous Stieltjes and Hausdorff’s Moment Problems. In Chapter 4 we analyze
and solve particular examples of non convex variational problems with restric-
tions on the derivative. Finally, in Chapter 5 we will give some comments and
remarks about this research and its links with other works and future develop-
ments. **************************************************************

*********************************************************************
*********************************************************************
*********************************************************************
*********************************************************************
In this paper we will analyze the general family of one dimensional variational

problems given in the following form:

miny I (y (x)) =
∫ b

a
f (x, y (x) , y′ (x)) dx

s.t.
α (x, y (x)) ≤ y′ (x) ≤ β (x, y (x)) for every x ∈ [a, b]
and Boundary Conditions : y (a) = ya, y (b) = yb

(7)

where the admissible functions y are supposed to belong to a proper Sobolev
space according to the particular integrand f. We will study the derivative
constrained variational problem 7 when the integrand f is given by the general
expression

f (x, y, λ) =
p∑

k=0

ck (x, y) λk (8)

which means that f is an arbitrary algebraic polynomial in the derivative y′. It
is remarkable that we do not use any assumption about the constraint functions
α and β here.

Let us to illustrate the essential features of this kind of optimization problems
by using an elementary model given as

miny I (y) =
∫ 1

0

{
φ (y′ (x)) + y (x)2

}
dt

s.t.
y′ ≤ 1

2
and y (0) = 0, y (1) = s .

(9)
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where φ is the fourth degree polynomial

φ (t) =
(
1− t2

)2
with two global minima at points ±1. In this case, we are compelled to find
a curve y (x) going from point (0, 0) to point (1, s) , whose derivative y′ must
minimize the integral

∫ 1

0
φ (y′ (x)) dx by choosing values not exceeding one half.

Simultaneously, the same curve y should take smaller absolute values along
its way in order to minimize the integral

∫ 1

0
y (x)2 dx. However, it is not com-

pletely clear when we can find such a curve. As instance consider the case when
s = 1

2 , in this case the straight line y0 (x) = x
2 satisfies the boundary conditions,

but it is not clear if I (y0) is the least value among all curves y (x) connecting
the point (0, 0) to the point

(
1, 1

2

)
.

On the other hand, if we consider the case s = 0 in the problem 9 we
easily realize that it does not have any solution. To show this fact we must
first exhibit a minimizing sequence for the functional I. This can be carried out
by constructing a family of highly oscillatory continuous curves which decrease
the value of the integral I without attaining a minimum for I at all. The
construction of such a family of curves proceeds in a simple way: choose their
slopes by taking values from −1 and 1

2 by preserving the relative proportions
1 : 2 along the interval [0, 1] . As instance, after dividing the interval [0, 1] in
N = 3k subintervals uniformly, draw a poligonal line starting from (0, 0) with
slope −1 on a selection of k subintervals, then asign a slope of 1

2 to the remaining
subintervals. By constructing one curve in this way, you will reach the boundary
condition point (1, 0) . From another point of view, if you follow this procedure
by mixing −1 slopes and 1

2 slopes, you get progressive lesser values for the
integral I. This slope mixing causes the curve to oscillate, therefore the faster
the slope transitions, the lesser the value of the integral I. In this way we have
sketched a procedure for explicitely constructing minimizing sequences for the
functional I, therefore the functional I lacks of minimizers because the previous
construction shows that inf I = 0, but it is evident that we can not find any
admissible function y satisfying I (y) = 0.

One important question about this kind of problems is to find the way to
describe the oscillatory behavior of their minimizing sequences when they lack
of minimizers. The method proposed in this paper will help us to clarify what
kind of oscillatory behavior can we expect when the problem lacks of minimizers.
This point has very important practical implications in several models described
by variational principles as those given in the form 7.

In order to analyze one particular non convex problem in the form 7, we use
its generalized formulation in Young measures. Refer to [Pe1997] and [Pe2000]
for an introduction to Young measures theory and its applications to variational
principles. The generalized formulation in Young measures of the variational
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problem 7 is given as the following optimization problem:

minν Ĩ (ν) =
∫ b

a

∫
R

f (x, y (x) , λ) dµx (λ) dx
s.t.
support (µx) ∈ [α (x, y (x)) , β (x, y (x))] for every x ∈ [a, b]
and Boundary Conditions : y (a) = ya, y (b) = yb

(10)

in which we must find a parametrized family of probability measures

ν = {µx : a ≤ x ≤ b}

which must minimize the generalized functional Ĩ . In this formulation the link
between y and ν is given by the restriction:

y′ (x) =
∫

R

λ dµx (λ) . (11)

Thus, we can determine every appearance of y (x) in 10 by using the first moment
of every parametrized measure µx and the boundary conditions imposed in the
problem.

We will show certain sort of equivalence between problem 7 and the cor-
responding formulation in Young measures given by the generalized problem
10. Indeed, we will see that problem 10 always has a minimizer, and we also
see that its minimum equals the infimum of problem 7. This is a well known
relaxation result. It is worth noticing here, that the supports of the optimal
parametrized measures for problem 10 determine the existence of minimizers
of the corresponding variational problem 7. In fact, they can describe the os-
cillatory behavior inherent in every minimizing sequence of the functional I.
Therefore, the abscense of oscillations means the existence of minimizers and
conversely the evidence for oscillatory behavior means the lack of minimizers.

Now we present the major proposal of this work: in order to carry out the
analysis of derivative constrained variational problems 7 when the integrand is
given by a polynomial like 8, we must represent every parametrized measure in
10 by using its algebraic moments. Thus, every generalized problem 10 can be
transformed into the following optimization problem:

minm J (m) =
∫ b

a

∑p
k=0 ck (x, y (x)) mk (x) dx

s.t.
mk (x) =

∫
R

λkµx (λ) for k = 0, . . . , n
support (µx) ∈ [α (x, y (x)) , β (x, y (x))] for every x ∈ [a, b]
and Boundary Conditions : y (a) = ya, y (b) = yb

(12)

whose variables mk (x) are the algebraic moments of the parametrized measure
µx, which in turn must be supported on the interval [α (x, y (x)) , β (x, y (x))] .
As we explained above, the appearances of y (x) in 12 can be determined from
the boundary conditions and the relation 11, which takes here the simpler form:

y (x) = m1 (x)
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where we have used the first moment of the parametrized measure µx.
We stressed that problem 12 can be described as an optimal control problem,

because we can use classical results on moments theory for characterizing a set
of values mk as the algebraic moments of any positive measure supported on a
particular interval of the real line. The most important fact about this obser-
vation is that we can estimate optimal parametrized measures for generalized
problems 10 by solving the corresponding moments control problem 12. Thus
we are exhibiting a practical way for clarifying either or not the original problem
7 has minimizers and for describing the oscillatory behavior in its minimizing
sequences too.

The present paper is organized as follows. In Chapter 2 we apply Young
measures theory for analyzing the family of derivative constrained variational
problems 7. In Chapter 3 we describe the Method of Moments for analyzing
generalized problems in the form 10 and we also analyze the Problem 12 by
using classical results from algebra like the famous Stieltjes and Hausdorff’s
Moment Problems. In Chapter 4 we analyze and solve particular examples of
non convex variational problems with restrictions on the derivative. Finally, in
Chapter 5 we will give some comments and remarks about this research and its
links with other works and future developments.

2 General Analysis of the Problem

In order to analyze the variational problem 7, we must transform it into a
standard variational problem by including its derivative constraints into the
definition of a new integrand f defined as follows:

f (x, y, λ) =
{ ∑p

k=0 ck (x, y) λk if (x, y, λ) ∈ A
∞ otherwise

where A is the set of values (x, y, λ) satisfying the inequalities in 7, i.e.

A =
{
(x, y, λ) ∈ R3 : α (x, y) ≤ λ ≤ β (x, y) where x ∈ [a, b]

}
.

In this way, the problem 7 takes the form of the following variational problem:

miny I (y (x)) =
∫ b

a
f (x, y (x) , y′ (x)) dx

under Boundary Conditions : y (a) = ya, y (b) = yb
(13)

whose functional I is defined in terms of the integrand function f.
In order to determine the existence of minimizers for this kind of problems we

must specify a particular space as the overall set of admissible functions. Since
we explicitely use the derivative of every admissible function to evaluate the
functional I in 13, we may use the one dimensional Sobolev space H1,p (a, b)
as the family of admissible functions where p is precissely the degree of the
polynomial in 8. We warn that we should consider bounded constraint functions
α and β in order to avoid incongruences with the admissible space choosen.
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After determining the admissible set for the particular variational problem we
are interested in, we focus on the existence of minimizers for this problem.

To solve this question we should use the Direct Method from the modern
theory of the Calculus of Variations. If we assume that I is a coercive, weakly
semi-continuous functional in the space of admissible functions, then we can
conclude that I has at least one minimizer in

H1,p
0 (a, b) + ya + (x− a)

(yb − ya)
b− a

(14)

because the choosen space of admisible functions is a reflexive Banach space
when p > 1. But this is just the drawback: we can not guaranty weak infe-
rior semi-continuity for the functional I because the integrand f does not have
necessarily a convex dependence on the derivative variable. A deeper analy-
sis of the implications of the convexity of the integrand function f upon the
weak semicontinuity of the functional I can be found in [Da1999], [Jo1998] and
[Bu1998].

In the particular case in which f and α are convex and β is concave, we can
easily analyze the variational problem 13 by the Direct Method of the Calculus
of Variations. Indeed, if the functional I takes a finite value on some admissible
function and f is coercive, i.e.

f (x, y, λ) ≥ g (x) + c |λ|p (15)

for some integrable function g in [a, b] and some positive constant c in the region
defined by A, then the existence of minimizers for I is guaranteed within the
space of admissible functions 14. See [Da1999, Theorem 4.1, pag 82.].

Since formulation 13 describes a general family of nonconvex variational
problems, we can apply a particular relaxation technique involving Young mea-
sures for analyzing them. This technique consists in formulating every non
convex problem 13 as a new optimization problem, defined in parametrized
measures, with the following form:

minν∈Y Ĩ (ν) =
∫ b

a

(∫
R

f (x, y (x) , λ) dµx (λ)
)
dx

s.t.
y′ (x) =

∫
R

λ dµx (λ)
and Boundary Conditions : y (a) = ya, y (b) = yb.

(16)

In this new optimization problem the objective function is a generalized func-
tional Ĩ defined in a vast space of parametrized probability measures Y. Each
memeber ν in Y is a whole family of probability measures µx indexed by a point
x in [a, b], i.e.

v = {µx : a ≤ x ≤ b} for every ν ∈ Y.

This amounts to replace the admissible function u : [a, b] → R by taking a
new sort of function ν : [a, b] → P whose values are probability distributions.
It is customary to refer every parametrized family ν as a Young measure. The
essential feature of Young measures in functional analysis is their ability to
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describe weak convergence in Lebesgue and Sobolev spaces, then they become a
fundamental tool for proving existence of minimizers for variational problems.
See [Pe1997] and [Pe2000] for a thorough exposition on the applications of Young
measures to variational problems.

We shortly present the basic ideas behind the theory of Young measures as
applied to variational problems. In order to prove the existence of minimizers
for a functional like

I (u) =
∫

Ω

f (u (x)) dx (17)

where f is a continuous function with positive polynomial growth toward the
infinities, we can use the Direct Method provided the functional I be weakly
inferior semicontinuous in a reflexive Banach space X and coercive, i.e.

I (u) →∞ whenever ‖u‖ → ∞.

Under these assumptions, every minimizing sequence {un : n ∈ N} has a weakly
convergent subsequence in X, i.e.

unk
⇀ u

for u ∈ X. We easily see that u is a minimizer for I, just notice that

inf
X

I ≤ I (u) ≤ lim inf
k

I (unk
) = inf

X
I.

We immediately see that f ◦ u is the weak limit of f ◦ unk
.

However, in abscense of the weak semicontinuous hypothesis we can not
apply this argument any more. Fortunately, we can analyze the weak limit of f ◦
un for every minimizing sequence as this is precisely the role of Young measures
in analysis. In short, for every sequence of admissible functions {un : n ∈ N}
we characterize the weak limit of the sequence f ◦ un as

φ (x) =
∫

R

f (λ) dµx (λ) (18)

where ν = {µx : a ≤ x ≤ b} is the Youg measure linked with the sequence
{un : n ∈ N} .

Under mild hypothesis, every sequence of admissible functions has a particu-
lar Young measure which provides the weak limit of the resulting sequence when
its terms are composed with a particular continuous function f with polynomial
growth, as has been just expressed in 18. Therefore, two sequences share the
same Young measure as far as they share all their weak limits after composition
with continuos functions. Thus, every Young measure represents the weak limits
of a huge family of function sequences when they are composed with continuous
functions. See [Pe1997].

Given an arbitrary sequence of admissible functions {un : n ∈ N} whose
Young measure is ν, the weak limit of the sequence f ◦ un can be obtained
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by using the integral in 18. Therefore, we can determine minimizing sequences
for the functional I by solving the following generalized variational problem

min
v∈Y

Ĩ (ν) =
∫

Ω

∫
R

f (λ) µx (λ) dx. (19)

It is worth noticing that we elude convexity assumptions as we are using Young
measures for describing weak limits of sequences like f ◦ un. The only assump-
tions on f are continuity and polynomial growth in the infinities. This is a
remarkable achivement as has been shown that the Direct Method fails in ab-
sence of weak semicontinuity which in turns comes from convexity in f. See
[Da1999] and [Pe1997].

By assuming polynomial growth in the function f and by using convex anal-
ysis tools, we can show that optimal parametrized measures for problem 19 are
supported on many finite points. In the special case in which every optimal
parametrized measure is supported on a single point, i.e.

µ∗x = δg(x) for every x ∈ [a, b]

where δt represents the trivial distribution supported on t (also called Dirac
measure), we conclude that u∗ (x) = g (x) is a minimizer for I. This turns out
to be true from the fact that

φ (x) =
∫

R

f (λ) dµ∗x (λ) = f (g (x))

is the weak limit of f ◦ un whenever un be a minimizing sequence for I. In
general, the optimal parametrized measures µ∗x are supported on finite sets
containing a fixed maximum number of points, let us to say two, which is true
in one-dimensional cases. Thus we obtain the general expression

µ∗x = p1 (x) δg1(x) + p2 (x) δg2(x) (20)

where
p1 (x) + p2 (x) = 1, pi (x) ≥ 0

for every x ∈ [a, b] and i = 1, 2.
Every probability measure in 20 gives us the information about the strategy

that we should impose in the function u in order to minimize the functional I.
As we explained above, the function

φ (x) =
∫

R

f (λ) dµ∗x (λ) = p1 (x) f (g1 (x)) + p2 (x) f (g2 (x)) (21)

provides the weak limit of any sequence f ◦ un whenever un is a minimizing
sequence for I. Therefore, the expression 21 gives us a method for revealing the
kind of oscillatory behavior we should observe in every minimizing sequence of
I. In order to decrease the value of the integral I in 18, the function u should
take values from g1 (x) and g2 (x) by using the relative proportions p1 (x) and
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p2 (x) inside an infinitesimal neighbourhood of the point x. When this analysis
is applied to the derivative of the function, we can observe several kinds of
oscillatory phenomena in the minimizing sequences of the functional I. This
analysis has been presented in [Pe1997] for the special case involving Sobolev
spaces.

Now we apply Young measures theory to the variational problem 13 we
are interested in. By assuming that the integrand f is bounded in the form
expressed in 15, we can apply Poincare’s inequality to conclude that every min-
imizing sequence for the functional I in 13 must be bounded in the Sobolev
space H1,p (a, b) . Then, the generalized problem 16 admits a minimizer and we
have the next ralaxation result:

min
ν∈Y

Ĩ = inf
X

I

where X is the admissible functions space given in 14. See [Pe1997, Theorem
4.4, page 67].

It is very important for our work noticing that the optimal Young measure

ν∗ = {µ∗x : a ≤ x ≤ b}

for the generalized functional Ĩ in 16 satisfies the following properties:

• fc (x, y (x) , λ) =
∫

R
f (x, y (x) , λ) µ∗x (λ) dx where

y (x) = ya +
∫ x

a

∫
R

λµx (λ) dx

and fc stands for the convex envelope of the function λ → f (x, y, λ) while
keeping fix x and y. See [Pe1997, Corollary 4.6, page 68.]

• The support of every optimal parametrized measure µ∗x must be contained
in the set of points λ satisfying fc (x, y (x) , λ) = f (x, y (x) , λ) for every
point x ∈ [a, b] .[Pe1997, Corollary 4.7, page 68]

• The variational problem 13 has a minimizer y∗ (x) = ya+
∫ x

a
g (s) ds if and

only if the optimal Young measure for 16 is composed of Dirac measures
in the form

µ∗x = δg(x).

[Pe1997, Proposition 6.12, page 111].

Now we can see easily that our generalized problem 16 can be posed as
the problem 12 because no point in the support of any parametrized measure
can be within the region where f have infinite values. This would cause I to
take infinite values. In the sequel we analyze problem 12 which is a generalized
variational problem in which the factible parametrized measures are supported
in the interval defined by the restrictions α and β of the original problem 13.
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3 Examples

3.1 Example 1

We consider the following variational problem:

min
∫ 1

0

(1− u′(t)2)2 + u(t)2dt

s.t.u(0) = a

u(1) = b

u′(t) ≤ α

We can write the relaxed problem as:

min
∫ 1

0

(
1− 2m2 + m4 +

∫ t

0

u(s)ds

)
dt

s.t.u(0) = a

u(1) = b 1 m1 m2

m1 m2 m3

m2 m3 m4

 ≥ 0

[
α−m1 αm1 −m2

αm1 −m2 αm2 −m3

]
≥ 0

3.1.1 Case 1

This program is solved for a = b = 0 and for α = 0.5 and we have that the
measure is:

µ∗ = 0.3456δ−0.9485 + 0.65544δ0.5

The figure 1 shows the oscillations presented in u(t)

Figure 1: u(t) for the example 1
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3.1.2 Case 2

Now we do the same procedure for a = 0, b = 1 and α = 0.5. We express the
measures as:

µ∗(t) =

{
0.3333δ−0.9469 + 0.6666δ0.5 if t ∈ [0, 0.4)
0.2462δ−0.9469 + 0.7538δ0.5 if t ∈ [0.4, 1]

The figure 2 shows the oscillations presented in u(t) for this case

Figure 2: u(t) for the example 1, case 2

3.1.3 Case 3

For the point a = 0, b = 0.2, y α = 0.5 we have the measure:

µ∗ = 0.2δ−0.9620 + 0.8δ0.5

the figure 3 shows the results for this case. Now, we take a point in the convex

Figure 3: u(t) for the example 1, case 3

zone, a = 0, b = 0.5 and α = 0.5, the measure is:

µ∗ = δ1

14



3.1.4 Case 4

For the next set of point, we take a = 0.5, b = 0, α = 0.5, we have the following
measures variables in time in the table 1: The figure 4 show the results for u∗

t µ∗

0.1 1δ0.9804

0.2 1δ0.9617

0.3 1δ0.9297

0.4 0.7869δ0.9035 + 0.2131δ0.5

0.5 0.6718δ0.9252 + 0.3282δ0.5

0.6 0.5844δ0.9289 + 0.4156δ0.5

0.7 0.5127δ0.9342 + 0.4873δ0.5

0.8 0.4892δ0.9540 + 0.5108δ0.5

0.9 0.4507δ0.9626 + 0.5493δ0.5

1 0.4250δ−0.972 + 0.5750δ0.5

Table 1: Table of measure

in this case.

Figure 4: u(t) for the example 1, case 4

3.1.5 Case 5

Now, we take as final point b = 0.3, a = 0.5 and α = 0.5. The measure is shown
in the table 2: We show in the figure 5 the result for u∗(t),

3.1.6 Case 6

We take the obvious case, when a = 0, b = 0 and α = 0. Here we have a
case that the problem is interesting just for proving the results. We got here a
measure:

µ∗ = δ0

And we have the results shown in the figure 6.
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t µ∗

0.1 1.0000δ−0.9804

0.2 1.0000δ−0.9617

0.3 1.0000δ−0.9297

0.4 0.7869δ−0.9035 + 0.5δ0.2131

0.5 0.6718δ−0.9252 + 0.5δ0.3282

0.6 0.5844δ−0.9289 + 0.5δ0.4156

0.7 0.5127δ−0.9342 + 0.5δ0.4873

0.8 0.4892δ−0.9540 + 0.5δ0.5108

0.9 0.4507δ−0.9626 + 0.5δ0.5493

1 0.4250δ−0.9720 + 0.5δ0.5750

Table 2: Table of measure

Figure 5: u(t) for the example 1, case 5

3.1.7 Case 7

We take the case that the pendant must be greater than zero. So we take a = 0,
b = 0.5 and α = 0. We have here a measure:

µ∗ = 0.5δ0 + 0.5δ1

The oscillations can be easily seen in the figure 7.

3.2 Example 2

Now we change a little bit the variational problem:

min
∫ 1

0

(1− u′(t)2)2 + u(t)2dt

s.t.u(0) = a

u(1) = b

u′(t) ≥ α

16



Figure 6: u(t) for the example 1, case 6

Figure 7: u(t) for the example 1, case 7

The relaxed problem take the form:

min
∫ 1

0

(
1− 2m2 + m4 +

∫ t

0

u(s)ds

)
dt

s.t.u(0) = a

u(1) = b 1 m1 m2

m1 m2 m3

m2 m3 m4

 ≥ 0

[
m1 − α m2 − αm1

m2 − αm1 m3 − αm2

]
≥ 0

3.2.1 Case 1

We take the case when a = 0, b = 0 and α = −0.1. The measure in this case is:

µ∗ = 0.9δ−0.1 + 0.1δ0.8484

And the result for this case is the oscillations that are shown in the figura 8.

17



Figure 8: u(t) for the example 2, case 1

3.2.2 Case 2

We take the case a = 0, b = 0.2, α = −0.1, and we have the measure shown in
the table ?? And we have here the figure 9.

t µ∗

0.1 0.7137δ−0.1000 + 0.2863δ0.8665

0.2 0.7124δ−0.1000 + 0.2876δ0.8654

0.3 0.7099δ−0.1000 + 0.2901δ0.8633

0.4 0.7060δ−0.1000 + 0.2940δ0.8601

0.5 0.7000δ−0.1000 + 0.3000δ0.8560

0.6 0.6896δ−0.1000 + 0.3104δ0.8510

0.7 0.6769δ−0.1000 + 0.3231δ0.8451

0.8 0.6617δ−0.1000 + 0.3383δ0.8382

0.9 0.6437δ−0.1000 + 0.3563δ0.8303

1 0.6226δ−0.1000 + 0.3774δ0.8215

Table 3: Table of measure

3.2.3 Case 3

Now we take α = −x/2 for this problem, a = 0, b = 0. The measure will be
given for the values in the table 4 The figure 10 shows the result for u∗(t).

3.3 Example 3

We take a different polynomial for the functional. In this case we will solve the
variational problem:

min
∫ 1

0

0.5 + u′(t)4 − 0.8u′(t)3 − 0.5u′(t)2 + 0.5u′(t) + u(t)2dt

s.t.u(0) = a

u(1) = b

u′(t) ≥ α

18



Figure 9: u(t) for the example 2, case 2

t µ∗

0.1 1.0000δ0.8294 + 0δ0

0.2 0.2138δ−0.1000 + 0.7862δ0.8337

0.3 0.4846δ−0.1500 + 0.5154δ0.8640

0.4 0.7219δ−0.2000 + 0.2781δ0.9006

0.5 0.8577δ−0.2500 + 0.1423δ0.9052

0.6 0.8900δ−0.3002 + 0.1100δ0.9108

0.7 δ−0.3523

0.8 δ−0.4020

0.9 δ−0.4500

1 δ−0.5000

Table 4: Table of measure

This problem in moments can be taken as:

min
∫ 1

0

(
0.5 + m4 − 0.8m3 − 0.5m2 + 0.5m1 +

(∫ t

0

u(s)ds

)2
)

dt

s.t.u(0) = a

u(1) = b 1 m1 m2

m1 m2 m3

m2 m3 m4

 ≥ 0

[
m1 − α m2 − αm1

m2 − αm1 m3 − αm2

]
≥ 0

3.3.1 Case 1

We take the above problem with the points a = 0, b = 0.1, and α = 0. The
table 5 shows the measure after solving this problem. The figure 11 shows the
graphic for this case.
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Figure 10: u(t) for the example 2, case 3

t µ∗

0.1 0.8752δ−0.0013 + 0.1248δ0.7458

0.2 0.8744δ−0.0013 + 0.1256δ0.7453

0.3 0.8730δ−0.0013 + 0.1270δ0.7441

0.4 0.8708δ−0.0013 + 0.1292δ0.7424

0.5 0.8678δ−0.0013 + 0.1322δ0.7401

0.6 0.8640δ−0.0013 + 0.1360δ0.7371

0.7 0.8593δ−0.0013 + 0.1407δ0.7335

0.8 0.8537δ−0.0013 + 0.1463δ0.7292

0.9 0.8471δ−0.0013 + 0.1529δ0.7242

1 0.8393δ−0.0013 + 0.1607δ0.7184

Table 5: Table of measure

3.3.2 Case 2

We are interesting for this problem in the case a = −0.5, b = 0 , α = 0. In the
table 6, we show the measure. The figure 12 shows the results in oscillations.

3.3.3 Case 3

We take this problem in the case a = −0.5, b = 0 , α = x/2. In the table 7, we
show the measure. The figure 13 shows the results in oscillations.

3.4 Example 4

Now, we take the variational problem as follows:

min
∫ 1

0

((1− u′(t)2)2 + (u(t)− g(t))2)dt

s.t.u(0) = a

u(1) = b

α ≤ u′(t) ≥ β
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Figure 11: u(t) for the example 3, case 1

t µ∗

0.1 1.0000δ0.7963

0.2 1.0000δ0.7792

0.3 1.0000δ0.7332

0.4 0.3837δ−0.0006 + 0.6163δ0.7424

0.5 0.3210δ−0.0002 + 0.6790δ0.7401

0.6 0.4972δ−0.0000 + 0.5028δ0.7371

0.7 0.5849δ−0.0000 + 0.4151δ0.7335

0.8 0.6370δ−0.0000 + 0.3630δ0.7292

0.9 0.5995δ−0.0001 + 0.4005δ0.7242

1 0.6042δ−0.0001 + 0.3958δ0.7184

Table 6: Table of measure

The relaxed problem can be written as:

min
∫ 1

0

(
1− 2m2 + m4

(∫ t

0

u(s)ds− g(t)
)2
)

dt

s.t.u(0) = a

u(1) = b 1 m1 m2

m1 m2 m3

m2 m3 m4

 ≥ 0

[
αβ + (α + β)m1 −m2 −αβm1 + (α + β)m2 + m3

αβm1 + (α + β)m2 −m3 −αβm2 + (α + β)m3 −m4

]
≥ 0

3.4.1 Case 1

We take the first case when a = 0, b = 0.2, α = −0.5, β = 0.5, g(t) = 0 for 10
points. The table 8 shows the measure we have for this case. The results here
are summarized in the figure 14.
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Figure 12: u(t) for the example 3, case 2

t µ∗

0.1 1.0000δ0.7109

0.2 1.0000δ0.6605

0.3 1.0000δ0.7942

0.4 0.8919δ0.8198 + 0.1081δ1.3221

0.5 0.1234δ−0.2500 + 0.8766δ0.7678

0.6 0.2404δ−0.3002 + 0.7596δ0.7647

0.7 0.3830δ−0.3501 + 0.6170δ0.7801

0.8 0.4654δ−0.3961 + 0.5346δ0.7878

0.9 0.5411δ−0.4281 + 0.4589δ0.7908

1 0.5596δ−0.4562 + 0.4404δ0.7932

Table 7: Table of measure

3.4.2 Case 2

We take a = 0, b = 0.1, α = −0.5, β = 0.5, and g(t) = t2. We have here the
results show in the table 9 for the measure. The figure 15 shows the results for
u∗(t)

3.4.3 Case 3

Now we take a = 0.5, b = 0.2, α = −0.5, β = 0.5, and g(t) = t/4. We have the
measure shown in the table 10. The result of the variational program is shown
in the figure 16
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Figure 13: u(t) for the example 3, case 3

t µ∗

0.1 0.3989δ−0.3018 + 0.6011δ0.5

0.2 0.3989δ−0.3055 + 0.6011δ0.5

0.3 0.4241δ−0.2529 + 0.5759δ0.5

0.4 0.4139δ−0.2595 + 0.5861δ0.5

0.5 0.4065δ−0.2722 + 0.5935δ0.5

0.6 0.4075δ−0.2521 + 0.5925δ0.5

0.7 0.3865δ−0.2666 + 0.6135δ0.5

0.8 0.3624δ−0.2846 + 0.6376δ0.5

0.9 0.3352δ−0.3072 + 0.6648δ0.5

1 0.3132δ−0.3154 + 0.6868δ0.5

Table 8: Table of measure

3.5 Example 5

We take the variational problem:

min
∫ 1

0

0.5 + u′(t)4 − 0.8u′(t)3 − 0.5u′(t)2 + 0.5u′(t) + u(t)2dt

s.t.u(0) = a

u(1) = b

α ≥ u′(t) ≥ β
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Figure 14: u(t) for the example 4, case 1

t µ∗

0.1 0.1450δ−0.5 + 0.8550δ0.5007

0.2 0.1398δ−0.5 + 0.8602δ0.5007

0.3 0.1403δ−0.5 + 0.8597δ0.5007

0.4 0.1578δ−0.5 + 0.8422δ0.5010

0.5 0.2037δ−0.5 + 0.7963δ0.5018

0.6 0.2899δ−0.5 + 0.7101δ0.5036

0.7 0.4288δ−0.5 + 0.5712δ0.5076

0.8 0.6318δ−0.5 + 0.3682δ0.5161

0.9 0.9133δ−0.5 + 0.0867δ0.5895

1 1.0000δ−0.5

Table 9: Table of measure

This problem in moments can be taken as:

min
∫ 1

0

(
0.5 + m4 − 0.8m3 − 0.5m2 + 0.5m1 +

(∫ t

0

u(s)ds

)2
)

dt

s.t.u(0) = a

u(1) = b 1 m1 m2

m1 m2 m3

m2 m3 m4

 ≥ 0

[
αβ + (α + β)m1 −m2 −αβm1 + (α + β)m2 + m3

αβm1 + (α + β)m2 −m3 −αβm2 + (α + β)m3 −m4

]
≥ 0

3.5.1 Case 1

The first case we analyse is a = 0, b = 0.2, α = −0.5, β = 0.5 y g(t) = 0. The
table 11 The result of the variational program is shown in the figure 17
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Figure 15: u(t) for the example 4, case 2

t µ∗

0.1 1.0000δ−0.5+
0.2 1.0000δ−0.5+
0.3 0.9611δ−0.5 + 0.0389δ0.4363

0.4 0.8715δ−0.5 + 0.1285δ0.4895

0.5 0.7942δ−0.5 + 0.2058δ0.4906

0.6 0.7323δ−0.5 + 0.2677δ0.4908

0.7 0.6856δ−0.5 + 0.3144δ0.4914

0.8 0.6563δ−0.5 + 0.3437δ0.4959

0.9 0.6377δ−0.5 + 0.3623δ0.4964

1 0.6321δ−0.50.3679δ0.4966

Table 10: Table of measure

3.5.2 Case 2

We take a = 0.1, b = 0, α = −0.5, β = 0.5 and p(t) = t/4. The table 12
shows the values we got for the measure. The result of the variational program
is shown in the figure 18

3.6 Example 6

Now we take a polynomial with 6 degree. The problem is to find the minimum
that:

min
∫ 1

0

(3.5u′(t)2 − 4u′(t)4 + u′(t)6)2 + u(t)2dt

s.t.u(0) = a

u(1) = b

u′(t) ≤ α
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Figure 16: u(t) for the example 4, case 3

t µ∗

0.1 0.5508δ−0.3786 + 0.4492δ0.5003

0.2 0.5289δ−0.3814 + 0.4711δ0.5002

0.3 0.4912δ−0.3851 + 0.5088δ0.5001

0.4 0.4441δ−0.3849 + 0.5559δ0.5003

0.5 0.3834δ−0.3778 + 0.6166δ0.5004

0.6 0.4210δ−0.3852 + 0.5790δ0.5002

0.7 0.2754δ−0.3783 + 0.7246δ0.5003

0.8 0.1183δ−0.4212 + 0.8817δ0.5009

0.9 1.0000δ0.5000

1 0.1868δ−0.37750.8132δ0.5000

Table 11: Table of measure

We can write the relaxed problem as:

min
∫ 1

0

(
3.5m2 − 4m4 + m6 +

∫ t

0

u(s)ds

)
dt

s.t.u(0) = a

u(1) = b
1 m1 m2 m3

m1 m2 m3 m4

m2 m3 m4 m5

m3 m4 m5 m6

 ≥ 0

 α−m1 αm1 −m2 αm2 −m3

αm1 −m2 αm2 −m3 αm3 −m4

αm2 −m3 αm3 −m4 αm4 −m5

 ≥ 0

3.6.1 Case 1

We take a = 0, b = 0, α = 0.2. The measure we have for this example is:

µ∗ = 0.8821δ−0.0314 + 0.1179δ0.2321
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Figure 17: u(t) for the example 5, case 1

t µ∗

0.1 0.6808δ−0.3727 + 0.3192δ0.5003

0.2 0.6706δ−0.3729 + 0.3294δ0.5002

0.3 0.6648δ−0.3732 + 0.3352δ0.5001

0.4 0.6632δ−0.3734 + 0.3368δ0.5003

0.5 0.6660δ−0.3738 + 0.3340δ0.5004

0.6 0.6729δ−0.3742 + 0.3271δ0.5002

0.7 0.6841δ−0.3746 + 0.3159δ0.5003

0.8 0.6997δ−0.3750 + 0.3003δ0.5009

0.9 0.7197δ−0.3755 + 0.2803δ0.5009

1 0.7443δ−0.3759 + 0.2557δ0.5000

Table 12: Table of measure

The figure 19 shows the oscillations for this problem.

3.6.2 Case 2

We take a = 0.5, b = 0, α = 0. We obtain here the measure shown in the table
13. And the figure 20 we have the oscillations.
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Figure 18: u(t) for the example 5, case 2

Figure 19: u(t) for the example 6, case 1
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t µ∗

0.1 δ−1.0151

0.2 δ−1.0250

0.3 δ−0.0000

0.4 δ−0.0000

0.5 δ−0.9237

0.6 δ−0.0000

0.7 δ0.0000

0.8 δ−0.0000

0.9 δ−1.6328

1 δ−0.3602

Table 13: Table of measure

Figure 20: u(t) for the example 6, case 2
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