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Abstract. We propose a general approach to deal with nonlinear, nonconvex varia-
tional problems based on a reformulation of the problem resulting in an optimization
problem with linear cost functional and convex constraints. As a first step we explic-
itly explore these ideas to some one-dimensional variational problems and obtain
specific conclusions of an analytical and numerical nature.
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1. Introduction

Nonlinear, nonconvex variational problems have lately received much attention be-
cause the behavior of such problems seems apparently connected to the explanation of
many situations in science and technology. We are referring to the oscillatory behavior
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inherently associated to lack of convexity. Since there are many papers focused on this
issue, we do not discuss it here. We simply mention the importance of these ideas in the
understanding of nonlinear elasticity from an energetic viewpoint (see [2]). Our contri-
bution in this paper is to start the analysis of a general treatment of nonconvex variational
problems by appropriately transforming a generalized formulation. It turns out that the
structure of this new, equivalent variational principle is as regular as one would desire
for treatment within the set of classical techniques in optimization theory, both from an
analytical and a numerical viewpoint. We show how this formalism yields nontrivial,
explicit results of both kinds in a simplified situation.

Our starting point is a typical variational problem in the Calculus of Variations where
we seek to minimize the functional

I (u) =
∫

�

f (x, u(x), ∇u(x)) dx

under appropriate boundary conditions, and possibly under additional restrictions. Since
these are not relevant to our discussion we do not specify them. � ⊂ RN is an open,
regular, bounded set; u: � → Rm is a deformation belonging to some Sobolev space;
and f : � × Rm × Mm×N → R is a density satisfying suitable technical assumptions
that are not important to clarify at this point. It is known that regardless of the convexity
properties of f with respect to ∇u, this variational problem is equivalent to a generalized
formulation in terms of gradient Young measures [9]. The basic feature of this formulation
we would like to stress is the form of the functional itself, overlooking again additional
restrictions. Indeed,

Ĩ (ν) =
∫

�

〈 f (x, u(x), ·), νx 〉 dx

is the new functional to be minimized on competing gradient Young measures ν =
{νx }x∈�. Notice that in this passage we have gone from a nonlinear dependence on
functions on∇u to a linear dependence on more complicated objectsν. The idea we would
like to explore is whether it might be possible to go back to an equivalent, variational
principle on functions while at the same time retaining linear dependence. Formally, we
can do so by using some sort of Parseval’s identity with respect to some unspecified,
appropriate integral transformation for measures

〈ϕ, µ〉 =
∫

ϕ̂(ξ)µ̂(ξ) dξ.

Applying this basic identity to our generalized functional, we formally obtain∫
�

〈 f (x, u(x), ·), νx 〉 dx =
∫

�

∫
f̂ (x, u(x), ·)ν̂x dξ dx

=
∫

�

∫
F(x, u(x), ξ)ν̂(ξ, x) dξ dx.

Thus, we are back to an optimization problem involving functions ν̂(ξ, x). The important
issue is to understand the structure of the set of feasible functions

� = {ν̂(ξ, x): ν admissible for Ĩ }.
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Our new, equivalent formulation would read

Î (g) =
∫

�

∫
F(x, u(x), ξ)g(x, ξ) dξ dx,

g ∈ � + relationship between u and g,

and possibly further constraints inherited by initial restrictions.
In this way we have gained two important features with respect to the initial op-

timization problem: linear dependence on competing functions, and convexity of the
set �. On the contrary, one would have to overcome technical difficulties in order to
establish rigorously the equivalence of the new variational problem and the original one;
more importantly if we pursue a better understanding of optimal behavior, we need an
explicit characterization of the set � without any reference to measures. We show how
this program can be carried out in some simplified, one-dimensional situations where
technicalities can be kept to a minimum. In particular, we have an explicit characteri-
zation of the set �, and show how this explicit information may be utilized to deduce
interesting, nontrivial information about optimal behavior.

We consider the scalar, one-dimensional variational problem

Minimize I (u) =
∫ b

a
ϕ(x, u(x), u′(x)) dx, u(a) = A, u(b) = B,

where u is supposed to be continuous, belonging to the Sobolev space W 1,1(a, b). The
integrand ϕ: (a, b) × R × R → R is assumed to be a Carathéodory function, which
means it is continuous on the pair (u, u′), and measurable in x . Furthermore, uniform
bounds of the type

c(|λ|p − 1) ≤ ϕ(x, u, λ) ≤ C(|λ|p + 1), p > 1, (1.1)

are also assumed on ϕ. When the dependece of ϕ on λ is convex for a.e. pair (x, u), the
above variational problem admits minimizers, and their existence is shown via the direct
method of the Calculus of Variations [4], [9]. However, when such dependence is not
convex, oscillatory behavior is typically the outcome, so that minimizing sequences are
forced to oscillate on smaller and smaller spatial scales: the more rapidly the oscillation
takes place, the smaller the value taken on by the integral. This phenomenon is by now
very well-understood as pointed out above. Even further, we restrict attention to

ϕ(x, u, λ) =
2n∑

j=0

aj (x, u)λ j , a2n ≡ 1,

because in this case the transformation from measures to functions materializes, without
any trouble, in the moments of underlying Young measures as we will see. We can
then use classical results on the characterization of vectors of moments of probability
measures in order to write down a fully explicit definition of � (Section 2), which in
turn will lead us to find interesting analytical and numerical results (Sections 3 and 4,
respectively).
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2. The Method in the One-Dimensional Case

We take from now on

ϕ(x, u, λ) =
2n∑

j=0

aj (x, u)λ j , a2n ≡ 1,

a monic, even-degree polynomial on λ with coefficients depending on (x, u). We also
work without loss of generality on the interval (0, 1) and take admissible, boundary
values to be

u(0) = u0, u(1) = u1,

so that we would like to understand the variational principle

Minimize I (u) =
∫ 1

0

2n∑
j=0

aj (x, u)(u′(x)) j dx

subject to

u ∈ W 1,1(0, 1), u(0) = u0, u(1) = u1.

According to our discussion in the Introduction, the equivalent generalized variational
principle in terms of Young measures associated to minimizing sequences takes the
form [9]

Ī (ν) =
∫ 1

0

∫
R

2n∑
j=0

aj (x, u)λ j dνx (λ) dx,

where admissibility for ν = {νx }x∈� means∫ 1

0

∫
R

|λ|2n dνx (λ) dx < ∞,

u′(x) =
∫

R
λ dνx (λ), u1 − u0 =

∫ 1

0

∫
R

λ dνx (λ) dx.

The use of the Parseval identity is trivial in this situation and does not pose any technical
difficulty since if we let

mj (x) =
∫

R
λ j dνx (λ),

the j th moment of νx , then we can write

Ī (ν) =
∫ 1

0

2n∑
j=0

aj (x, u)mj (x) dx.

Looking at the vector m = (mj )j=0,1,...,2n as our independent variable, we can write Ī in
terms of moments as

J (m) = Ī (ν) =
∫ 1

0
a(x, u(x)) · m(x) dx,

a(x, u(x)) = (aj (x, u(x)))j=0,1,...,2n, m = (mj )j=0,1,...,2n.
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Feasibility conditions on m will have to incorporate its genesis as succesive moments
of probability measures, as well as the relationship between m and u, and prescribed
boundary conditions. Namely,

m(x) ∈ � =
{(∫

R
λi dµ(λ)

)
i=0,1,...,2n

: µ, probability measure

}
,

for each x ∈ (0, 1),∫ 1

0
m1(x) dx = u1 − u0, u′(x) = m1(x).

It is straightforward to check that � is a convex set of R2n+1. It is not closed due to the
fact that in taking limits of a sequence of moments associated to a sequence of probability
measures “some mass may escape to infinity.” To clarify this issue consider the vector
(1, 0, 0, 0, 1) which belongs to the closure �̄ because it is the limit of the vectors of
moments up to fourth order of the sequence of probability measures

tδ−((1−t)/t)1/4 + (1 − t)δ(t/(1−t))1/4 ,

when t → 1. Indeed, the vector of moments corresponding to this sequence of measures is

(1, (t (1 − t))1/4(
√

1 − t − √
t), 2

√
t (1 − t), (t (1 − t))1/4(

√
t − √

1 − t), 1)

which converges to (1, 0, 0, 0, 1) as t → 1.
The whole point we would like to stress is that an independent characterization of the

closure of the set � with no reference to any probability measure whatsoever exists. The
key fact is the following theorem which is essentially a classical result on the algebraic
moment problem [1], [10].

Theorem 2.1. A vector m = (mj )j=0,1,2,...,2n , m0 = 1, belongs to �̄ if and only if its
associated Hankel matrix

H = (mk+l)k,l=0,1,...,n, H =




1 m1 m2 · · · mn

m1 m2 m3 · · · mn+1

m2 m3 · · · mn+2

...
...

...
. . .

...

mn mn+1 · · · m2n




is positive semidefinite, i.e. all (real) eigenvalues are nonnegative.

Proof. Although as remarked earlier this is essentially a classical result, we include
here some indication on how to deal with the closure of the set �. What is indeed classical
is the following lemma.
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Lemma 2.2 [1, page 30].

1. If a vector m = (mj )j=0,1,2,...,2n , m0 = 1, belongs to �, then its associated
Hankel matrix is positive semidefinite.

2. The Hankel matrix associated to a vector m as before is (strictly) positive definite
if and only if m is the vector of the first 2n moments of a probability measure
whose support contains at least n + 1 different mass points.

By an elementary perturbation argument based on this lemma we can prove our
theorem.

The necessity part is straightforward from the lemma. Concerning the sufficiency, let
m be such a vector whose Hankel matrix is positive semidefinite. Let µ be any probability
measure supported in R whose vector of first 2n moments, m̃, gives rise to a positive
definite Hankel matrix. For ε > 0 small, consider the vector

mε = 1

1 + ε
(m + εm̃),

and its associated Hankel matrix Hε. By our assumption on m and the way in which we
have chosen m̃, Hε is positive definite. By Lemma 2.2 there exists a probability measure
µε whose vector of 2n first moments is mε. Hence mε ∈ � and since mε → m as ε → 0,
we conclude that m ∈ �̄ as desired.

As a corollary we can express the condition on the eigenvalues of the matrix H in
terms of its entries.

Corollary 2.3. A vector m = (mj )j=0,1,2,...,2n , m0 = 1, belongs to �̄ if and only if

bj ≥ 0, j = 0, 1, 2, . . . , n − 1, n,

where bj are the coefficients of the characteristic polynomial of H :

det(H − λ1) =
n+1∑
j=0

(−1) j bjλ
j .

The proof is based on the identification of �̄ with the positive semidefinite Han-
kel matrices according to Theorem 2.1. A well-known result on the coefficients of the
characteristic polynomial of a positive semidefinite matrix (e.g. [5] and [6]) completes
the proof. However, since sometimes the characterization of symmetric, semidefinite
matrices is formulated in different terms, we include here, for the convenience of the
reader, some comments on the proof.

Proof of Corollary 2.3. Notice that the coefficients bj are precisely Sn+1− j (λ0, λ1, . . . ,

λn) where Sd is the dth elementary symmetric function of the (real) eigenvalues of
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H , λi . Therefore, it is well known that

det(H − λ1) = (−1)n+1
n∏

j=0

(λ − λj )

=
n+1∑
j=0

(−1) j Sn+1− j (λ0, λ1, . . . , λn)λ
j

=
n+1∑
j=0

(−1) j bjλ
j .

If all eigenvaluesλj are nonnegative, then trivially the coefficients bj are also nonnegative.
Conversely, if all bj are nonnegative, then the characteristic polynomial written above
cannot have a negative root λ′ < 0 since, under the assumption bj ≥ 0 for all j < n + 1,
all terms in the above sum will have the same sign and its sum would vanish. This implies
that each individual term

(−1) j bjλ
′ j

must be zero. This in turn implies bj = 0 for all j < n + 1. However, then the charac-
teristic polynomial is (−1)n+1λn+1 which obviously does not have a negative root. This
contradiction finishes the proof.

It is important to notice that, despite the fact that in the new variational problem in
terms of the moments, we have to work on the closure of�because we have at our disposal
such a characterization, the coercivity condition (1.1) (with p = 2n) forces optimal
moment vectors to belong to � and not to �̄\�. In other words, the optimal solutions
we are looking for must be the moments of the underlying Young measure solution, and
these are truly probability measures whose mass is contained in a compact set of R and
not a sequence of such probability measures for which part of the mass escapes to infinity.
Even more, by Carathéodory’s theorem [4] we know that the underlying Young measure
solution is supported at most in two points, since we are working in one-dimensional
problems. See [9] for a full discussion of this issue.

3. A Specific Example

We examine whether the results of the preceding section can lead to concrete conclusions
in some cases. We concentrate on the case n = 2, so that we consider four-degree
polynomials. In this section we show how this approach can be efficiently used to give the
convexification of any four-degree polynomial in closed form in terms of its coefficients.

One of the simplest variational problems one can consider is

Minimize
∫ 1

0
ϕ(u′(x)) dx
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subject to u(0) = 0, u(1) = t and u ∈ W 1,1(0, 1). It is well known that the value of
this infimum is precisely the convexification of the scalar function ϕ(s) evaluated at t ,
Cϕ(t). Alternatively, we can also put

Cϕ(t) = min{〈ϕ, µ〉: µ is a probability measure with first moment t}.

When ϕ is a polynomial of degree four, we can drop the linear part without loss of
generality, and put

ϕ(s) = P(s) = a2s2 + a3s3 + s4.

Due to the homogeneity of the situation, the above variational problem leading to the
convexification of P at any given t is equivalent to

min
m

(a2m2 + a3m3 + m4)

subject to the fact that (t, m2, m3, m4) must be the moments of a probability mea-
sure. We now have at our disposal a fully explicit characterization of a vector m =
(m1, m2, m3, m4) to correspond to the moments of a probability measure, by direct
application of Corollary 2.3.

Corollary 3.1. A vector m = (m1, m2, m3, m4) is the vector of the first four moments
associated to a probability measure if and only if

m4m2 + m4 + m2 − m2
1 − m2

2 − m2
3 ≥ 0,

m2m4 − m2
3 − m2

1m4 + 2m1m2m3 − m3
2 ≥ 0.

Therefore, the problem of determining the convexification of P at t reduces to a
convex, mathematical programming problem:

min
m

(a2m2 + a3m3 + m4)

subject to

m2 − t2 + m4 − m2
2 + m4m2 − m2

3 ≥ 0,

m2m4 − m2
3 − t2m4 + 2tm2m3 − m3

2 ≥ 0

Notice that in spite of the unboundedness of this set of vectors, the existence of an
optimal solution is not an issue because we do know a priori that such an optimal solution
must correspond to an optimal probability measure providing the convexification of our
polynomial. It is this fully explicit problem we would like to treat. The Karush–Kuhn–
Tucker optimality conditions read:

1 − λ1(1 + m2) − λ2(m2 − t2) = 0,

a3 − λ1(−2m3) − λ2(−2m3 + 2tm2) = 0,
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a2 − λ1(1 − 2m2 + m4) − λ2(m4 + 2tm3 − 3m2
2) = 0,

λ1(m2 − t2 + m4 − m2
2 + m4m2 − m2

3) = 0,

λ2(m2m4 − m2
3 − t2m4 + 2tm2m3 − m3

2) = 0,

m2 − t2 + m4 − m2
2 + m4m2 − m2

3 ≥ 0,

m2m4 − m2
3 − t2m4 + 2tm2m3 − m3

2 ≥ 0,

λ1, λ2 ≥ 0,

where λ1 and λ2 are the multipliers associated to the two constraints. The case

λ1 = λ2 = 0

is clearly impossible. On the other hand the possibility

m2 − t2 + m4 − m2
2 + m4m2 − m2

3 = 0,

together with the fact that the mi ’s are the moments of a probability measure and therefore

m2 − t2 ≥ 0, m4 − m2
2 ≥ 0, m4m2 − m2

3 ≥ 0,

lead to the conclusion that the optimal underlying probability measure is a Dirac mass
at t . This will correspond to the region where the polynomial is indeed convex. Finally,
the region of nonconvexity must correspond to the case

λ1 = 0, m2 − t2 + m4 − m2
2 + m4m2 − m2

3 > 0,

m2m4 − m2
3 − t2m4 + 2tm2m3 − m3

2 = 0.

After eliminating λ2 and appropriately rewriting the last equation, we arrive at the system
of equations

(m4 − m2
2)(m2 − t2) − (tm2 − m3)

2 = 0,

a3(m2 − t2) + 2(m3 − tm2) = 0,

a2(m2 − t2) − m4 − 2tm3 + 3m2
2 = 0.

By combining the last two, we get

m4 − m2 = (a2 + ta3 − 2m2)(m2 − t2);

and by manipulating the first two, we have

m4 − m2
2 = a2

3

4
(m2 − t2).
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We immediately see by looking at these two new equations that

m2 = a2
3

8
− ta3

2
− a2

2
,

and then

m3 = a2a3

4
− a2

3

16
+
(

3a2
3

8
− a2

2

)
t,

m4 = a2
2

4
− a2a2

3

4
+ 3a4

3

64
+
(

a2a3

2
− a3

3

4

)
t.

These are the optimal moments when t does not belong to the convexity region of P .
Altogether we can explicitly write down the straight line giving the linear part of CP, by
taking these optimal moments and putting them in a2m2 + a3m3 + m4 in order to obtain
the affine expression in t :

1
64 (−16a2

2 + 8a2a2
3 − a4

3) + 1
8 (−4a2a3 + a3

3)t.

How can we determine the precise region where the convexification of P , CP, must
coincide with P itself and where it must be the previous line? The common boundary
of these two regimes can be determined by imposing that the optimal moments must
be given simultaneously by the above formulas, and, at the same time, they must come
from a single Dirac mass centered at t . Hence

a2
3

8
− ta3

2
− a2

2
= m2 = t2.

This quadratic equation yields the boundary values for t which separate the region where
CP equals P and where it is equal to a straight line. Specifically,

CP(t) =




P(t), |t + a3
4 | ≥ 1

4

√
3a2

3 − 8a2,

1
64 (−16a2

2 + 8a2a2
3 − a4

3)

+ 1
8 (−4a2a3 + a3

3)t, |t + a3
4 | ≤ 1

4

√
3a2

3 − 8a2.

(3.1)

When the radicand

3a2
3 − 8a2 ≤ 0

the polynomial is indeed convex.
We believe it is worthwhile to compare this analysis to the more direct, geometric

approach consisting of looking for points x and y such that

P ′(x) = P ′(y) = P(x) − P(y)

x − y
.
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The solution of these equations will also provide the necessary data for finding the
convexification of P . However, the form of these equations when

P(s) = s4 + a3s3 + a2s2

is

(x − y)[4(x2 + xy + y2) + 3a3(x + y) + 2a2] = 0,

(x3 + x2 y + xy2 + y3) + a3(x2 + xy + y2) + a2(x + y) = 4x3 + 3a3x2 + 2a2x .

This system of nonlinear equations does not seem as tractable as the one we have solved
before. In fact, we had to resort to a symbolic calculator package in order to find the
solution in closed form.

Needless to say, it is impossible to provide the fully explicit form of the con-
vexification for a general sixth- or higher-degree polynomial in terms of the coeffi-
cients as in (3.1), although the procedure works reasonably well for concrete, specific
examples.

We believe it is also interesting to stress the point that if we use the fact that optimal
vector of moments must correspond to convex combinations of just two Dirac masses
(as pointed out before) too soon, then the good convexity properties of our formulation
are lost and, despite the fact that the number of variables may be considerably reduced,
one has to deal with local minima. Again, the main feature of the moment formulation
is that it definitely avoids the difficulties attached to local minima.

4. Numerical Computations

From our perspective, the most interesting feature of the analysis proposed in this paper
is that the new formulation in terms of moments corresponds to minimizing a linear cost
functional under a set of constraints determining a convex set of feasible vectors. This
is again what the title of the paper means to convey. From the numerical approximation
viewpoint, this is a quite remarkable transformation since the new formulation is suitable
for the use of standard optimization algorithms. In particular, it completely avoids the
tremendous difficulty attached to local minima. We would like to stress this point by
looking at a number of selected examples and conducting several numerical experiments
on them. Some attempts to compute the underlying Young measure for some of these
same examples have been made in [3] and [8].

We remind the reader that the type of problem we are concerned with is

Minimize
∫ 1

0

2n∑
j=0

aj (x, u(x))u′(x) j dx

subject to

u ∈ W 1,1(0, 1), u(0) = u0, u(1) = u1.
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Although in principle the procedure would work for any n, for simplicity we restrict
attention to n = 2, so that we are again dealing with fourth-degree polynomials in the
derivative u′.

The equivalent, linear, convex, fully explicit optimization problem would read

Minimize
∫ 1

0

4∑
j=0

aj (x, u(x))mj (x) dx

subject to

m4(x)m2(x) + m4(x) + m2(x) − m1(x)2 − m2(x)2 − m3(x)2 ≥ 0,

m2(x)m4(x) − m3(x)2 − m1(x)2m4(x) + 2m1(x)m2(x)m3(x) − m2(x)3 ≥ 0,

u′(x) = m1(x),

∫ 1

0
m1(x) dx = u1 − u0.

We adopt a typical discretization based on equally spaced nodes in the interval (0, 1).
All of our experiments were conducted by dividing this interval into 10 subintervals.
Discrete moments are assumed to be constant on each subinterval where we utilize a
usual trapezoidal rule to integrate numerically the coefficients aj (x, u(x)) on a given
subinterval. The form of the discretized version is

Minimize
1

20

10∑
i=1

4∑
j=0

[
aj

(
i

10
, u0 + 1

10

i∑
k=1

m(k)
1

)

+ aj

(
i − 1

10
, u0 + 1

10

i−1∑
k=1

m(k)
1

)]
m(i)

j

subject to

m(i)
4 m(i)

2 +m(i)
4 +m(i)

2 −(m(i)
1 )2−(m(i)

2 )2−(m(i)
3 )2 ≥0, i =1, 2, . . . , 10,

m(i)
2 m(i)

4 −(m(i)
3 )2−(m(i)

1 )2m(i)
4 +2m(i)

1 m(i)
2 m(i)

3 −(m(i)
2 )3 ≥0, i =1, 2, . . . , 10,

1

10

10∑
i=1

m(i)
1 = u1 − u0.

The variables of the problem are the discretized moments

{m(i)
j }i=1,2,...,10, j=0,1,...,4.

Notice that if the dependence of the coefficients aj is nonlinear on u, a nonlinearity
is introduced on the cost functional when eliminating u from the formulation. This
dependence needs to be convex. It is this discretized version that can be approximated
by standard optimization algorithms or packages. Notice that we are dealing with a
convex problem so that numerical algorithms should provide the global minimum.
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Once this optimal solution {m(i)
j } is found, we need to recover the underlying prob-

ability measures

ν(i) = w(i)δl(i) + (1 − w(i))δr (i) , i = 1, 2, . . . , 10,

whose moments up to fourth order are precisely the optimal solution found. This is an
easy elementary task. Since we are in the one-dimensional situation, one weight

w(i) ∈ [0, 1]

and two mass points

l(i) ≤ r (i)

suffice. These three parameters are the solution of the system

w(i)l(i) + (1 − w(i))r (i) = m(i)
1 ,

w(i)(l(i))2 + (1 − w(i))(r (i))2 = m(i)
2 ,

w(i)(l(i))3 + (1 − w(i))(r (i))3 = m(i)
3 ,

for each i . Explicit formulae for the solution can be given.
This family of probability measures can be interpreted as a discretized version of

the underlying Young measure minimizer of the original nonconvex variational problem
(see [9]). The way in which we can depict minimizing sequences from those probability
measures consists in drawing on each subinterval (i − 1

10 , i/10) small line segments
with relative length given by the weight w(i) and alternate slopes l(i) and r (i). Optimal
behavior would tend to refine indefinitely these small segments. From this point of view,
it is important to realize that our computations are not finite-element approximations. In
the numerical table that follows, we provide those weights, w(i) and 1 −w(i), associated
with mass points r (i) and l(i), respectively. By using this information as we have just
explained, pictures of minimizing sequences are drawn.

The numerical algorithm we have used consists of a quadratic penalization to take
care of the nonnegative constraints. The optimization algorithm itself is a typical conju-
gate gradient method. More accurate approximations would require a much more spe-
cialized analysis. Yet our results faithfully reflect the behavior of minimizing sequences.

We have first computed several examples where the optimal, oscillatory behavior is
known, at least qualitatively. Then we explore more complex examples where nothing
is known about optimality.

We first take the typical two-well potential where the functional is given by

I (u) =
∫ 1

0
[(u′(x)2 − 1)2 + 1

2 u(x)2] dx.

Numerical results for this functional depending on boundary conditions are given in
Table 1.
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Table 1. Numerical results for different boundary conditions.

Weight Slope Weight Slope

Boundary conditions: u0 = u1 = 0

n = 1 0.496516 0.988789 0.503484 −0.984965
n = 2 0.496496 0.988778 0.503504 −0.985006
n = 3 0.496702 0.988531 0.503298 −0.985131
n = 4 0.496298 0.988674 0.503702 −0.985388
n = 5 0.496985 0.988067 0.503015 −0.985475
n = 6 0.497278 0.987665 0.502722 −0.985724
n = 7 0.497548 0.987257 0.502452 −0.985998
n = 8 0.497893 0.986760 0.502107 −0.986317
n = 9 0.498285 0.986199 0.501715 −0.986663
n = 10 0.498755 0.985552 0.501245 −0.987055

Boundary conditions: u0 = 0, u1 = 1
2

n = 1 0.713578 0.873943 0.286422 −0.961861
n = 2 0.725119 0.876012 0.274881 −0.972898
n = 3 0.742838 0.879419 0.257162 −0.992038
n = 4 0.762479 0.883814 0.237521 −1.01651
n = 5 0.783088 0.888899 0.216912 −1.04602
n = 6 0.804777 0.894646 0.195223 −1.08274
n = 7 0.827228 0.901196 0.172772 −1.12872
n = 8 0.850084 0.908649 0.149916 −1.18569
n = 9 0.873063 0.917012 0.126937 −1.25862
n = 10 0.895716 0.926377 0.104284 −1.35229

These results reflect what was already known. In the first case the Young measure
solution is homogeneous, essentially the same in all subintervals. This is not so however
for the other set of boundary conditions. If we draw these numerical values, the profile
of the solutions for each of the above situations would be the ones shown in Figures 1
and 2.

Our next example consists of an interesting variation of the preceding one where
we change the zero-degree contribution of the functional, namely,

I (u) =
∫ 1

0

[
(u′(x)2 − 1)2 + 1

2

(
u(x) − x

2

)2
]

dx.

This particular case, and the effect of boundary conditions on the Young measure solution
was thoroughly examined in [7]. Our numerical results agree with the conclusions on this
reference. Notice how in some cases there is a region where the Young measure solution
is trivial so that optimal behavior will not exhibit oscillations in that zone. Rather than
giving the numerical values obtained in this and subsequent examples we have depicted
them in a graph (Figures 3–5).
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Figure 1. Boundary conditions: u0 = u1 = 0.

Our next example was also considered in [7]. This time the functional and boundary
conditions are

I (u) =
∫ 1

0
[(u′(x)2 − 1)2 + 1

2 (u(x) − 2x(x − 1))2] dx, u(0) = u(1) = 0.

The second draft in Figures 6 and 7 are a magnified version of the central part of the
interval where persistent oscillations occur.

Our final example is the functional

I (u) =
∫ 1

0
[u′(x)4 + u(x)u′(x)3 + (u(x) − x)2] dx.

We used two sets of boundary conditions. In the first instance, we put u0 = 0, u1 = 0.3.
The computed optimal behavior we found is shown in Figures 8 and 9. Secondly, we
took u0 = 0, u1 = −0.3, and obtained the profiles given in Figures 10 and 11.

In subsequent papers we would like to analyze whether these ideas can be imple-
mented in the (scalar) higher-dimensional situation.
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Figure 2. Boundary conditions: u0 = 0, u1 = 1
2 .
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Figure 3. Boundary conditions: u0 = 0, u1 = −1.
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Figure 4. Boundary conditions: u0 = 0, u1 = −0.7.
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Figure 5. Boundary conditions: u0 = 0.5, u1 = 0.
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Figure 7.
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Figure 9.
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Figure 10.
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