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Abstract

We propose an alternative method for computing e¤ectively the solu-
tion of the control inventory problem under non-convex polynomial cost
functions. We apply the method of moments in global optimization to
transform the corresponding, non-convex dynamic programming problem
into an equivalent optimal control problem with linear and convex struc-
ture. We device computational tools based on convex optimization, to
solve the convex formulation of the original problem.

1 Introduction

This work proposes an alternative method for computing e¤ectively the solution
of the control inventory problem of the �rm. The problem analyzed here is a
version of the contrl inventory problem explored in [29], where the �rm chooses
inventories and production plannings to minimize the discounted present value
of its costs. The essential di¤erence between this and previous models is the
presence of nonconvexities in the cost function of the technology facing �rms;
particular characteristics of internal labor markets as well as the capital utiliza-
tion decisions of �rms may alter the relationship between the level of output and
costs, leading to non-convex k-time cost function, instead of the classical convex
cost function with increasing marginal costs. Our aim in this work is to over-
come this particular non convex situation from the point of view of optimization
theory and convex analysis. We will focus on non convex expressions described
by polynomials. We remark that non convex situations in optimization prob-
lems are di¢ cult to understand. There is no general method for analyzing and
solving problems with this feature [2, 4, 19,20].
The economic literature has focused on the estimation of the e¤ects of out-

put, inventories and sales in the costs of the �rm, using statistical and economet-
ric techniques. However, in the case of the nonconvex cost function, it cannot be
guaranteed that the calculated elasticities lie over the optimal solution, because
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su¢ cient conditions are not available [29]. To our knowledge, none of the ex-
isting works in the current economic research have focused on the computation
of the level of inventories and production that minimize the costs of the �rm,
under non-convex costs of production. We accomplish this task by using the
method of moments which allows us to �nd the optimal solution, in spite of the
non convexities present in the dynamic programming model. This method has
been recently proposed as a theoretical and practical tool for solving non con-
vex optimization problems in control theory, global optimization and calculus
of variations [3, 17,18,22�25,27,28,32].
In this work we deal with non-convex dynamic programming problems given

in the form:

min IN
2 +

NX
k=0

�kCk

s.t. Ik � Ik�1 = Yk � Sk, k = 0; :::; N (1)

I�1 = 0

Ik � 0; Yk � 0 k = 0; :::; N (2)

where the cost function Ck can be expressed as a polynomial, namely

Ck = 
3Y
3
k + 
2Yk

2 + 
1(Yk � Yk�1)2 + �1(Ik � �2Sk+1)2 k = 0; :::; N

where Yk is the production during the period k, Ik is the stock of �nished goods
inventories at the end of the period k, and Sk+1 represents period k + 1 sales;

0s and �0s are theoretical parameters. We remark that the leading coe¢ cient
of the Hamiltonian function 
3 is positive and 
2 coe¢ cient can be negative
owed to negative marginal costos on the overrall economy.
The non-linear, non-convex form of the control variable, prevents us to use

either the Hamiltonian equations of the minimum principle for discrete-time
problems or mathematical programming techniques, because we cannot guar-
antee that the theoretical su¢ cient conditions for optimality hold on them. We
propose to convexify the control variable Yk by using the method of moments.
By using the classical solution of the Stieltjes Moment Problem, we can formu-
late a linear, convex relaxation of (1) in the following form:

min IN
2 +

NX
k=0

�kC 00k

s.t. Ik � Ik�1 = m1k � Sk, k = 0; :::; N

qk+1 = m1k, k = 0; :::; N (3)

I�1 = 0

Ik � 0; m1k � 0 k = 0; :::; N (4)

where

C 00k = 
3m3k + (
1 + 
2)m2k � 2
1qkm1k + 
1q
2
k

+�1(Ik � a2Sk+1)2 k = 1; :::; N

2



and the new control variable is the vector mk in RL+1, whose i-entry is de�ned
as

mik =

Z
R+
uikd�(uk) i = 0; :::; L:

That is, the entries of mk are the moments of some measure � with respect to
the basis functions

�
1; uk; u

2
k; :::; u

L
k

	
; supported on the semiaxis [0;1) of the

control variable Yk:
What is new in this approach is the convexi�cation of the control variable

by using moment variables, which allows us to obtain an equivalent, convex
formulation more appropriated to be solved by high performance numerical
computing. We should warn the reader about the di¢ culties of numerical algo-
rithms to overcome non-convex situations in optimization problems [9,14,19,21].
We will apply the Method of Moments to the control inventory problem under
polynomial cost functions, using theoretical parameters.
The present paper is organized as follows. In section 2 we describe the

control inventory problem explaining with some detail the theoretical source of
the non-convexities in the cost function. In section 3 we outline the basics of the
Method of Moments when the k-time objective function is a polynomial on the
control variable. We also explain the essentials of the transformation of dynamic
programming of problems like (1) into its equivalent linear, convex relaxation
(3). In section 4 we motivate the application of the Method of Moments by
calculating the convex envelope of a simpler k-time cost function and we solve
the control inventory problem by using this method. We �nish with a conclusion
in Section 5.

2 The Control Inventory Problem

2.1 A Background on the Problem

The problem analyzed is a simple version of the control inventory problem ex-
plored in [29], where the �rm chooses inventories and production to minimize
the discounted present value of its costs. The di¤erence between this and previ-
ous models is the nonconvexities in the technology facing �rms. The standard
production smoothing model of inventory investment states that a convex short-
run cost function or a cost of changing the level of production induces �rms to
hold �nished goods inventories in order to smooth production; this implies that
production should not respond fully to a change in sales. However, certain over-
whelming facts evidence that �rms do not in fact smooth production; instead,
production is actually more variable than sales and the covariance between sales
and inventory change is not negative.
One possible explanation for the failure of the production smoothing model

to explain the behavior of inventories is the presence of nonconvexities in the
technology facing �rms. The standard neoclassical theory states that it is op-
timal for �rms to produce only over ranges of output where marginal costs are
increasing, hence, over ranges where total costs are convex References [6,29,33]
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mention that the cost function may be convex at low output levels and concave
at high levels. Then small shifts in demand could cause production to jump
substantially. So it may be allowed to have declining marginal costs.
According to [29] characteristics of internal labor markets as well as the

capital utilization decisions of �rms alter the relationship between the level of
output and costs. For example, the �rm can treat high-skilled workers as �xed
factors of production: during a downturn, it uses them for less productive tasks
and when demand rises again, the �rm can increase production by using the
same labor inputs more e¢ ciently; thus the enterprise is not forced to pay over-
time work. Furthermore, processing �rms may have incentives to build plants
with large capacities, since the expanding of plants may increases production
more than it rises costs.
Reference [29] is one of the leading papers taking into account non-convexities

in the cost function of the inventory problem. In recent years several authors
have been studying this kind of costs, and proposing di¤erent objective func-
tion forms. In [7] the authors study how plants in the U.S. automobile industry
adjust production. They show that the lumpiness of the production in this
industry is caused by exploitation of nonconvex operating margins; the main
margins are adding or dropping a shift, varying regular hours by shutting the
plant down for a week and, less important, overtime hours. These margins lead
to nonconvexities in the cost function, which is the sum of several terms, one of
them being non-convex and the rest being discontinuous in their arguments.
In [10] the authors investigate the aggregate implications of a nonconvex-

ity in technology: the �rm�s choice of technique. In particular, they study a
machine replacement problem in which a �rm must decide whether or not to
install a new machine or continue to produce with an older, depreciated ma-
chine. The empirical analysis focus on the U.S. automobile manufacturers and
shows that the dramatic seasonal �uctuations of plants are induced by machine
replacement, hence due to non-convexities in technology.
In [15] is presented econometric evidence of the incidence of non-convex

costs in the relative variation of production to sales, in the automobile assembly
plants. Following [7], the labor contract provisions and the non-convex mar-
gins produce large discontinuous jumps in the plant�s cost curve. The author
concludes that when desired production is above the plant�s minimum e¢ cient
scale, non-convexities induce production bunching; the plant uses less than full
capital utilization on average and production is more volatile than sales. When
desired production is below the plant�s minimum e¢ cient scale, the plan op-
erates in a convex region of the cost curve. In this case, it uses high levels of
capital utilization and production is less volatile than sales.
In [30] the authors try to explain the decline in volatility of U.S. GDP growth

beginning in 1984. In order to shed light into the discussion, they study the
behavior of the U.S. automobile industry, where the changes in volatility have
mirrored those of the aggregate data. They conclude that an inventory model
involving non-convex costs predicts that a decline in the persistence of sales
shocks leads to a decline in the variance of production relative to the variance
of sales and to a decline in the covariance of inventory investment and sales.
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From the preceding review it is clear that the recent literature has been
looking for non-convexities in the U.S. automobile industry. According to [7]
this is due to its substantial cyclical volatility and the quality of the data;
but they note that the automobile industry is not representative to the entire
economy and it is not the only industry where non-convex costs can be found. In
fact, chapter 4.1 describes the evidence of non-convexities in the food industry
presented in [29].

2.2 The Model

The model presented in [29] proposes a current-period cost function which takes
the form of a three-degree polynomial on the control variable

Ck = 
3Y
3
k + 
2Yk

2 + 
1(Yk � Yk�1)2 + �1(Ik � �2Sk+1)2 k = 1; :::; N (5)

where Yk is the production during period k, Ik is the stock of �nished goods
inventories at the end of the period k, and Sk+1 is period k + 1 sales; 
0s y �0s
are parameters.
The second term allows for the cost of producing Yt, a convex cost in the

short term; the third term represents the cost of changing the level of production
(i.e. the cost of adjusting the labor force and reassigning tasks); the fourth term
is a cost of deviating from target inventory, which is a linear function of sales;
�nally, the �rst term allows for a cubic cost function, which in the presence of
the quadratic term (the cost of producing Yt) with negative coe¢ ciente may
lead to a k�time non-convex cost function. Since the �rm has not started the
process of production at the beginning of the �rst period, the cost of changing
the level of production at k = 0 is null. Hence, the current-period cost at k = 0
is

C0 = 
3Y
3
0 + 
2Y0

2 + �1(I0 � �2S1)2

Given sales Sk, the �rm chooses inventories and production to minimize
the expected discounted present value of its costs, subject to the equation of
inventory motion

min IN
2 +

NX
k=0

�kCk

s.t. Ik � Ik�1 = Yk � Sk, k = 0; :::; N (6)

I�1 = 0

Ik � 0; Yk � 0 k = 0; :::; N

where k is the time index, 0 < � < 1 is a time discount factor and Ck is the
current-period cost function during period k. The equation of inventory motion
states that sales must be covered with output and inventories. We set the initial
condition I�1 = 0 in order to impose a zero level of inventories at the beginning
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of the production process and we give to the the �rm a punishment for holding
high inventories at the end of its decision period - we assume this additional cost
term is quadratic in the level of �nal inventories. Production Yk is the control
variable, inventories Ik represent the state variable and the sales Sk can be seen
as an exogenous variable.
This problem is a simpler version of the one presented in [29]. The �rst

di¤erence lies in the omission of the price shock terms (relating wages, materials
prices and energy prices) and the error terms; hence, our objective function is not
the expected discounted value of costs but the e¤ective discounted value of costs.
The exclusion implies there is no uncertainty between agents. This assumption
may be very restrictive, but its inclusion involves the analysis of stochastic
optimization problems, which is beyond the scope of this paper. The second
di¤erence refers to the period length: we truncated the in�nite period problem
suggested in [29], in order to apply the minimum principle. The inclusion of the
uncertainty terms and the in�nite period treatment of the problem constitute
items for future research.

3 Nonlinear Dynamic Programming Problems
to the light of the Method of Moments

We develop here the discrete-time form of the Method of Moments, whose con-
tinuous version for optimal control problems is presented in [27]. The Method
of Moments applies to dynamic programming problems given in the form:

min J(u0; :::; uN ) = fN+1(xN+1) +

NX
k=0

fk(xk; uk)

s.t. xk+1 = gk(xk; uk); k = 0; :::; N (7)

uk 2 Uk � R+; k = 0; ::; N

x0 = �x0

where (u0; u1; :::; uN ) is the control sequence, (x0; x1; :::; xN+1) is the corre-
sponding state sequence, the Uk are the control constraint sets which in this
case all lie in the positive semiaxis on the real line1 and the functions fk and gk
can be expressed as polynomials in the control variable uk; in general we have:

fk(xk; k; uk) =

l1X
i=0

ai(xk; k)u
i
k (8a)

gk(xk; k; uk) =

l2X
i=0

ci(xk; k)u
i
k: (8b)

1The Method of Moments deals with constraint sets lying not only in the semiaxis [0;1),
but in the entire real space. Given the characteristics of the control inventory problem,
however, it is necessary to study this more restrictive problem.
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We assume that fk and gk functions are continuously di¤erentiable with respect
to xk: The nonconvex form of the control variable is an obstacle to use the
Hamiltonian function of the minimum principle2 and non-linear mathematical
programming techniques. An alternative approach for dealing with this kind of
problems is to convexify the control variable by using the method of moments
in the polynomial expressions (8).
Given the polynomial form of fk and gk; the Hamiltonian Hk of the dynamic

programming problem is a polynomial in the control variable:

Hk =
LX
i=0

�i(xk; pk; k)u
i
k k = 0; :::; N (9)

where L = maxfl1; l2g. We are interested here in �nding the global minimiza-
tion of Hk in uk, namely

min
uk�0

Hk(uk) =
LX
i=0

�iu
i
k: (10)

Notice that we use positive controls as this is the common setting in inventory
models.

3.1 The General Theory of the Method of Moments

One approach for solving problem (10) comes from convex analysis, because we
can use the convex envelope of the function Hk in order to locate its global
minima [23]. The following theorem characterizes the convex envelope of the
Hamiltonian function by using measure theory.

Theorem 1 The convex envelope of Epi(Hk) can be expressed as

co(Epi(Hk)) =

(Z
R+
Hk(uk)d�(uk) : � 2 P (R+)

)

where P (R+) is the family of all probability Borel measures supported in the
semiaxis [0;1).

Once we have characterized the convex hull ofHk, we can obtain the set of all
global minima of Hk using a recent result for global optimization of polynomials.

Theorem 2 [17,22] Let P (R+) be the set of all regular Borel probability mea-
sures supported in the semiaxis [0;1). If Hk is an algebraic polynomial whose
leader coe¢ cient �L is positive , then

min
�2P (R+)

Z
R+
Hk(uk)d�(uk) = min

uk2R+
Hk(uk):

2For a description of the minimum principle for discrete-time problems see [5] and [8].
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From the previous theorem, it follows that we should use the generalized
optimization problem in measures

min
�2P (R+)

Z
R+
Hk(uk)d�(uk) (11)

as an alternative formulation of the global optimization problem (10). The
following theorem states that the solution of problem (11) is the family of all
probability measures supported in the set of all global minima of the Hamil-
tonian function Hk.

Theorem 3 [17,23,24] Let G be the set of all global minima of the Hamiltonian
function Hk in R+ then,Z

R+
Hk(uk)d�

�(uk) = min
�2P (R+)

Z
R+
Hk(uk)d�(uk)

if and only if the support of �� is contained in G. Brie�y, the set P (G) is the
solution set for the generalized problem (11).

The preceding two theorems show that there exists a theoretical equivalence
between the minimization problem (10) and the relaxed problem (11). The
following section make such equivalence explicit and useful.

3.2 Convexi�cation of Polynomial Expressions

The relaxed problem (11) contains information about all the global minima
of the function Hk in R+: This kind of problems cannot be solved easily in
practice, due to the di¢ culty for describing all possible convex combinations
of points in R+. However, the polynomial form of the Hamiltonian function
Hk(uk) =

PL
i=0 �iu

i
k make it more manageable.

Every integral in problem (11) can be expressed as an elementary dot product
in RL+1 Z

R+
Hk(uk)d�(uk) =

LX
i=0

�imik = � �mk

where � is the coe¢ cients vector of the Hamiltonian polynomial at time k and
the moment vector mk in RL+1 is de�ned as:

mik =

Z
R+
uikd�(uk) i = 0; :::; L (12)

which are the moments of some measure � with respect to the functional basis�
1; uk; u

2
k; :::; u

L
k

	
at time k.
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The optimization problem (11) transforms into the following convex problem:

min
mk2M

LX
i=0

�imik (13)

whereM is the convex cone of all vectors in RL+1 whose entries are the algebraic
moments of a probability measure supported in R+, namely

M = fm 2 RL+1 : mi =

Z
R+
uid�(u) i = 0; :::; L , � 2 P (R+)g:

Although this formulation seems attractive due to the linear form of the ob-
jective function and the convex structure of the feasible set, it is still a theoretical
formulation not very useful if we do not properly characterize the feasible setM;
see [27]. The characterization of the values m0k;m1k; :::;mLk, as the moments
of some measure �, is an open question in contemporary mathematics. This
di¢ cult task is called The Problem of Moments. Given the standard algebraic
basis in R+ and values m0k;m1k; :::;mLk, the Problem of Moments consists in
determining a positive measure � such that equation (12) holds; it also includes
the search for requirements in order to characterize m0k;m1k; :::;mLk as a set of
moments. Depending on the functional basis and the domain set the Problem
of Moments can take di¤erent forms. For the standard algebraic basis and the
domain R+ the Problem of Moments is referred as Stieltjes Moment Problem.
The solution of the Stieltjes Moment problem is summarized in the following

result:

Lemma 4 [16] Let L = 2n + 1 and consider the matrices Ak = (mi+j;k)
n
i;j=0

and Bk = (mi+j+1;k)
n
i;j=0. If matrices Ak and Bk are both positive de�nite then

the vector (m0k; :::;mLk) is in �M . Conversely, if m0k; :::;mLk are the algebraic
moments of some positive measure supported in [0;1), then the matrices Ak
and Bk are positive semide�nite.

From the preceding lemma we conclude that the closure ofM is composed of
all vectors in RL+1 whose entries form two positive semide�nite (p.s.d) Hankel
matrices [27]:

�M = f(mi)
2n+1
i=0 2 RL+1 : (mi+j)

n
i;j=0; (mi+j+1)

n
i;j=0 are p.s.d with m0 = 1g:

This result allows us to transform the relaxed problem (13) into the semide�nite
program:

min
mk

2n+1X
i=0

�imik (14)

s.t. (mi+j;k)
n
i;j=0 � 0; (mi+j+1;k)

n
i;j=0 � 0; with m0 = 1:

So far, we have presented the existing links between the non-linear, non-
convex problem (10) and the convex program (14). Now we want to guarantee
we can obtain some information about the global minima of the later by solving
the former. This task is accomplished in [23].
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Theorem 5 [23] Let ��k be one probability measure supported in [0;1), whose
supporting points are global minima of the Hamiltonian function Hk(uk) in
[0;1). Then, the algebraic moments m�

0k; :::;m
�
Lk of the measure �

�
k solve the

optimization problem (14). At the converse, if values m�
0k; :::;m

�
Lk solve prob-

lem (14), there exists a unique probability measure ��k supported in [0;1), with
algebraic moments m�

0k; :::;m
�
Lk, whose supporting points are global minima for

Hk(uk) in [0;1).
Moreover, we can relate the minimizers of problem (14) with the number

of global minima present in the objective function of the problem (10), as the
following corollaries states.

Corollary 6 [27] Since the set of global minima of Hk is �nite, any solution
m�
k of problem (14) can be expressed as

m�
k = �1T (u1k) + :::+ �sT (usk)

where u1k; :::; usk are global minima of Hk; s � L; �j > 0 with
Ps

j=1 �j =

1, where T is the nonlinear transformation T : R+ ! RL+1 de�ned by the
expression T (uk) = (1; u2k; :::; u

L
k ):

Therefore, if Hk has a unique global minimum u�k, the optimal control can
be expressed as u�k = m�

1k. According to the preceding corollary, we can also
state that any solution ��k of problem (11) can be expressed as ��k = �1�u�1k +
::: + �s�u�sk : When u

�
k is the unique global minimum we have ��k = �u�k , where

�t represent a dirac measure:

3.3 Analysis of the problem

In the previous section we outlined the basics of the Method of Moments. These
results suggest to reformulate the global minimization of the Hamiltonian Hk
in problem (10) as:

min
mk

Hk(xk; k; pk;mk) =
2n+1X
i=0

�i(xk; k; pk)mik (15)

s.t. (mi+j;k)
n
i;j=0 � 0; (mi+j+1;k)

n
i;j=0 � 0; with m0k = 1 k = 0; :::; N:

Then, we can solve the non-liner, non-convex problem (7) by dealing with its
convex relaxation:

min
mk

fN+1(xN+1) +
NX
k=0

l1X
i=0

ai(xk; k)mik

s.t. xk+1 =

l2X
i=0

ci(xk; k)mik

(mi+j;k)
n
i;j=0 � 0; (mi+j+1;k)

n
i;j=0 � 0; with m0k = 1 (16)

for k = 0; :::; N

x0 = �x0

10



where L = maxfl1; l2g = 2n+ 1:
Notice that the semide�nite program (15) corresponds to the optimization

of the Hamiltonian of the convex formulation (16)

eHk = eHk(xk; k; pk;mk) =

l1X
i=0

ai(xk; k)mik + p
0

k �
l2X
i=0

ci(xk; k)mik

=
LX
i=0

�i(xk; k; pk)mik

The analytical aspects of the formulation (16) and its relation with problem
(7) are a consequence of the results presented in the previous section. The fol-
lowing theorem and its corollary provide a practical method to certify if problem
(7) lacks of minimizers.

Theorem 7 Let us assume that u�k is a minimizer of the optimal control prob-
lem (7), then the control vector m�

k given as

m�
ik = (u

�
k)
i for i = 0; :::; L: (17)

is a minimizer of the formulation (16).

Proof. This proof follows the one outlined in [27] for optimal control problems.
Since u�k is an optimal control for problem (7), according to [8] the minimum
principle claims that u�k satis�es the global minimization problem:

Hk(x
�
k; k; p

�
k; u

�
k) = min

uk2R+
Hk(x

�
k; k; p

�
k; uk) (18)

where x�k comes from the solution of the di¤erential equation:

x�k+1 = gk(x
�
k; u

�
k) for k = 0; :::; N

x�0 = �x0

and the function p�k comes from the solution of the �nite di¤erences equation:

p�k =
@Hk+1(x

�
k+1; u

�
k+1; p

�
k+1; k + 1)

@xk+1
for k = 0; :::; N � 1

and the boundary condition

p�N =
dfN+1(x

�
N+1)

dxN+1
:

On the other hand, the Hamiltonian function Hk has the polynomial form (9)
and u�k solves the global minimization problem (18), therefore we can use the
theory of global optimization of polynomials of Section 3 to show that the vector
m�
k 2 RL+1 de�ned as:

m�
ik = (u

�
k)
i i = 0; :::; L
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satis�es the semide�nite program:

min
mk2 �M

eHk(x�k; k; p�k;mk) (19)

where: eHk(xk; k; pk;mk) =
LX
i=0

�i(xk; k; pk)mik

and the functions x�k; p
�
k in problem (19) come from the solution of the �nite

di¤erences equations:

x�k+1 = gk(x
�
k; u

�
k) for k = 0; :::; N (20)

p�k =
@Hk+1(x

�
k+1; u

�
k+1; p

�
k+1; k + 1)

@xk+1
for k = 0; :::; N � 1

with the boundary conditions x�0 = �x0 and p
�
N =

dfN+1(x
�
N+1)

dxN+1
: Since gk and @Hk

@xk

in system (20) have polynomial form in the variable u�k, and every appearance
of the i-th power of u�k can be replaced by m

�
ik, then we can see that functions

x�k and p
�
k satisfy the di¤erential equations:

x�k+1 = egk(x�k;m�
k) for k = 0; :::; N

p�k =
@ eHk+1(x�k+1;m�

k+1; p
�
k+1; k + 1)

@xk+1
for k = 0; :::; N � 1

where egk(xk;mk) =
Pl2

i=0 ci(xk; k)mik and @ eHk

@xk
is the formal partial derivative

of eHk with respect to variable xk. Since m�
k solves the program (19), we have:

Hk(x
�
k; k; p

�
k;m

�
k) = min

mk2 �M
Hk(x

�
k; k; p

�
k;mk)

and we conclude that m�
k satis�es the minimum principle�s necessary condi-

tions for the minimizers of the convex formulation (16). Thus, m�
k must be a

minimizer of (16).
Note that ifm�

k is a minimizer of problem (16) satisfying (17), then (m
�
1k)

i =
m�
ik and m

�
1k is a minimizer of problem (7). This situation is particularly con-

venient in order to calculate minimizers of problem (7), because we only have
to solve the convex formulation (16) which is more appropriated to be handled
by high performance, non-linear programming techniques [27].

Corollary 8 [27] If all the minimizers of the formulation (16) fail in satisfying
the expression (17), the problem (7) lacks of minimizers.

Therefore we can determine the lack or existence of minimizers in problem
(7) by checking all the minimizers of formulation (16) satisfying (m�

1k)
i = m�

ik

i = 1; :::; L.
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4 Solving the Control Inventory Problem with
the Method of Moments

In this section we solve the control inventory problem (6) by using the Method
of Moments. In order to justify the application of this method, we will describe
where do the non-convexities arise and we mention its e¤ects on the decision
problem of the �rm. Then, we calculate the optimal production and inventories
for each period k.
First we transform slightly problem (6). Note that the k-time cost function

(5) depends not only on the current control Yk but also on the lagged control
Yk�1; however, the minimum principle admits only current values of controls
and states. Following [5] this situation can be handled by introducing a new
state variable. Thus, we introduce qk = Yk�1 and add the equation qk+1 = Yk
to the system of inventory motion. After some algebraic manipulation, the
optimization problem (6) yields,

min IN
2 +

NX
k=0

�kC 0k

s.t. Ik � Ik�1 = Yk � Sk, k = 0; :::; N

qk+1 = Yk, k = 0; :::; N (21)

I�1 = 0

Ik � 0; Yk � 0 k = 0; :::; N

where

C 0k = 
3Y
3
k + (
1 + 
2)Y

2
k � 2
1qkYk + 
1q2k (22)

+�1(Ik � a2Sk+1)2 k = 1; :::; N

C 00 = 
3Y
3
0 + 
2Y

2
0 + �1(I0 � �2S1)2

Note that the constraint sets for each control variable Yk are simply R+
for k = 0; ::; N 3 ; they are indeed convex as is required by the discrete-time
minimum principle [5]. Also note that the cost function (22) is not convex on
the control variable Yk. Since we cannot use the su¢ cient conditions of the
minimum principle, we cannot apply it to problem (21) as we are not certain
about the optimality condition.

4.1 The non-convex cost function

Now we outline some theoretical and empirical facts in order to understand
where do the non-convexities of the cost function arise. Reference [29] states
that in the presence of certain technologies it is possible to have both declining
and increasing marginal costs over some ranges of production. A cubic term
on the production Yk was included in the k-time cost function (22) -besides

3This is due to the natural assumption of positive production.
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the quadratic term- which can entail nonconvexities in the cost function. A
negative 
1 + 
2, which is the coe¢ cient of the quadratic term on the cost
function (22), would evidence the presence of declining marginal costs; if in
addition the coe¢ cient of the cubic term 
3 is positive, we can state that the
cost function is nonconvex in the positive real line.
To illustrate this situation, �gure 1 presents the k-time cost function (22)

including only the cubic and quadratic terms4 , with a positive coe¢ cient for the
former 
3 = 0:1, and a negative coe¢ cient for the later 
1+ 
2 = �6. The sum
of the convex function F (Y ) = 0:1Y 3 and the concave function G(Y ) = �6Y 2
is the non-convex function C(Y ) = 0:1Y 3 � 6Y 2:

Figure 1: F (Y ) = 0:1Y 3; G(Y ) = �6Y 2; C(Y ) = 0:1Y 3 � 6Y 2

Table 1 presents all the parameters of the cost function calculated in [29]
using statistical and econometric techniques; the industries studied in [29] are
food, tobacco, apparel, chemicals, petroleum, rubber and automobile. In all
seven industries 
1+
2 was estimated to be negative, indicating declining mar-
ginal costs. In all industries but food, 
3 was not signi�cantly di¤erent from
zero. We remark these estimations imply that the non-convexities in the cost
function arise only in the food industry. The other six industries present concave
cost functions, where the cost minimization problem makes no sense; because
its leader coe¢ cient 
1 + 
2 is negative, the k-time polynomial cost function is
unbounded from below5 .

4The omitted terms would translate the curve or change slightly its slope, but the concavity
of the function would not be changed.

5Note that this results contradict the standard neoclassical theory, which states that the
�rm always faces increasing marginal costs.
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1 
2 
3 �1 �2
Food 1.100000 -7.780000 0.000307 1.000000 0.857000
Tobacco 0.133000 -0.740000 0.000000 1.000000 0.407000
Apparel 0.094800 -0.531000 0.000000 1.000000 0.314000
Chemical 0.014400 -0.566000 0.000000 1.000000 0.389000
Petroleum 0.075800 -0.354000 0.000000 1.000000 -0.040000
Rubber -0.009500 -0.218000 0.000000 1.000000 0.436000
Autos 0.477000 -1.780000 0.000000 1.000000 0.415000
Theoretical 1.000000 -7.000000 0.100000 1.000000 1.000000

Table 1: Parameters of the Cost Function

Then, we should only study those minimization problems where the parame-
ters of the polynomial cost function exhibit non-convex (non-concave) behavior
through their cost function. For the food industry, the di¤erence in the order of
magnitude between 
3 and the other coe¢ cients makes it di¢ cult to calculate
the solution of the optimization problem with the available computational tools
-see Table 1. Thus, in order to make the problem manageable, we use theo-
retical parameters for the polynomial cost function, presented in Table 1, as a
qualitative model of this situation. Note that the selected parameters are quite
similar from those of the food industry, except for 
3 which is higher to avoid
problems with its order of magnitude.

4.2 The Convex Envelope of the Cost Function

In this section we describe the e¤ects of the non-convexities of the cost function
in the decision problem of the �rm and we outline the role of its convex envelope
when calculating the optimal solution. In the previous subsection we explained
how this non-convexities arise. The analysis of the e¤ects of the non-convexities
in this simpler case, may help us to understand better its e¤ects in the more
complicated inventory control problem.
Suppose the �rm faces a non-convex cost function given by

C = 0:1Y 3 � 6Y 2 (23)

like the one illustrated in �gure 1. In order to minimize its costs, it is not
optimal for the �rm to choose those ranges of production where the curve is
non-convex; instead, it should choose only those ranges of output where the
cost function is convex. That is, in the minimization process the �rm should
use not the non-convex cost function, but its convex envelope.

4.2.1 Analytical Frame for the Convex Envelope

Given any function f : [0;1) ! R; its convex envelope is characterized as a
convex function fc : [0;1) ! R which makes true the following expression:
Epi(fc) = co(Epi(f)). By using Caratheodory�s theorem of convex analysis, we
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conclude that every point (a; fc(a)) on the graph of the convex envelope of f ,
can be expressed as a convex combination of points located on the graph of f
with two terms at most. Then, we can express (a; fc(a)) as

(a; fc(a)) = �1(a1; f(a1)) + �2(a2; f(a2)) (24)

where �1 + �2 = 1, �1; �2 � 0 and ai 2 R+ for i = 1; 2. Following [26], if we
interpret the points a1; a2 and the coe¢ cients �1; �2 as the components of a
discrete probability distribution, that is

�� = �1�a1 + p2�a2 (25)

where �a represents a Dirac measure, then we can express (24) as a particular
integration process:

(a; fc(a)) =

Z 1

0

(t; f(t))d��(t)

where �� is supported in [0;1) -because a1; a2 2 [0;1).
We can estimate the values a1; a2 and �1; �2 of (24), by solving the following

optimization problem:

fc(a) = min
�

Z 1

0

f(t)d�(t) (26)

where � represents the family of probability distributions in [0;1) with mean
a [31]: If we use the fact that f can be described as a polynomial of odd degree
given in the general form:

f(t) =
2n+1X
i=0

cit
i

then we can transform the optimization problem (26) into the optimization
problem

fc(a) = min
m

2n+1X
i=0

cimi (27)

where the variables m must belong to the convex set M of all the vector
m 2 R2n+2 whose entries are the �rst 2n + 2 algebraic moments of one pos-
itive measure supported in [0;1) with mean equal to a [1, 11, 16]. By using
the solution of the Stieltjes Moment Problem -see section 3.2- the optimization
problem (27) is equivalent to the following semide�nite program:

min
m

2n+1X
i=0

cimi

s.t. (mi+j)
n
i;j=0 � 0; (mi+j+1)

n
i;j=0 � 0

with m0 = 1 and m1 = a.

Since �� is supported in two points at most, we can construct �� in (25) by
using its moments 1; a;m�

2;m
�
3 obtained after solving the semide�nite program

(27). This task can be carried out by elementary algebra [1, 11,16].
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4.2.2 The Simpler Cost Function and its Convex Envelope

By using the method described previously, we graph the convex envelope Cc of
the simpler cost function (23) in Figure 2. For a given point in the domain, for
example a = 15;we obtain the coe¢ cients �1 = 0:4966, �2 = 0:5034 and the
points a1 = 0:0219, a2 = 29:7785. That is, the point (15; Cc(15)) in the convex
envelope of C can be expressed as the convex combination of two points located
in the graph of C

(15; Cc(15)) = 0:4966 � (0:0219; C(0:0219)) + 0:5034 � (29:7785; C(29:7785))

whose associated discrete probability distribution is

�� = 0:4966 � �0:0219 + 0:5034 � �29:7785

Figure 2: C = 0:1Y 3 � 6Y 2 and its convex envelope Cc

As we noted earlier, it is not optimal for the �rm to choose levels of pro-
duction were the convex envelope Cc di¤ers from the cost function (23). In this
simpler static problem, it is clear which levels of output should the �rm choose:
those which minimize the convex envelope of the cost function. The same notion
applies for our original optimization problem (21), however, it will not be that
clear which level of production must the �rm choose, due to the dynamic nature
of our problem. The optimal solution can be obtained by using the Method of
Moments described in section 3, which minimizes the convex envelope of the
k-time cost function, but in a dynamic frame.
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4.3 The Solution of the Control Inventory Problem

Now we solve the control inventory problem (21) by using the Method of Mo-
ments. Since the control variable must lay in R+, all moment vectors of positive
measures are supported in the semiaxis [0;1), then we use the solution of the
odd case of the Stieltjes Problem6 . Doing so, the convex relaxation of problem
(21) yields

min
mk

IN
2 +

NX
k=0

�kC 00k

s.t. Ik � Ik�1 = m1k � Sk, k = 0; :::; N

qk+1 = m1k, k = 0; :::; N (28)

I�1 = 0

Ik � 0; m1k � 0 k = 0; :::; N

(mi+j;k)
1
i;j=0 � 0; (mi+j+1;k)

1
i;j=0 � 0, m0k = 1 k = 0; :::; N

where

C 00k = 
3m3k + (
1 + 
2)m2k � 2
1qkm1k + 
1q
2
k (29)

+�1(Ik � a2Sk+1)2 k = 1; :::; N

C 000 = 
3m30 + 
2m20 + �1(I0 � �2S1)2

The optimization problem (28) is a non-linear mathematical program. Fol-
lowing [27], in order to represent the matrix inequality conditions as a set of
non-linear inequalities, we use the fact that all subdeterminants of a positive
semide�nite matrix are nonnegative [12]. Then, the matrix inequality conditions
(mi+j;k)

1
i;j=0 � 0; (mi+j+1;k)

1
i;j=0 � 0 given as�

m0k m1k

m1k m2k

�
� 0;

�
m1k m2k

m2k m3k

�
� 0

are expressed as a set of non-linear inequality constraints:

m0k � 0
m2k � 0

m0km2k �m2
1k � 0

m1k � 0
m3k � 0

m1km3k �m2
2k � 0

Hence, we have transformed the optimal control problem (6) into a non-
linear, convex, mathematical program in 5 � (N + 1) variables and 9 � (N +
1) constraints. Notice that the independent coe¢ cient of the cost function
depends on Ik and qk. In order to solve this kind of high dimensional, non-
linear mathematical programs, we use standard professional software based on
Sequential Quadratic Programming [9,14,19,21].

6Note that the assumption of convext constraint sets is not an obstacle for applying the
Method of Moments in this particular problem.
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The parameters of the polynomial cost function are presented in Table 1,
which are quite similar from those of the food industry, as noted earlier. Fol-
lowing [29], the discount factor � was preset at 0:99. We choose monthly sales,
which is the exogenous variable, in four di¤erent scenarios. The �rst scenario
assumes stable sales; the second scenario, ascending sales; the third, descend-
ing sales; and the fourth, variable sales. Their order of magnitude was chosen
according to the level of production which minimizes the simpler cost function
(23) -according to Figure 2, this optimal output is approximately 40.
We checked the uniqueness of the minimizers by evaluating expression (17);

when the order of magnitude of expressions

(m1k)
2 �m2k; (m1k)

3 �m3k k = 0; :::; N (30)

was small we concluded that the minimizers were unique.
We solved the optimization problem along 12 months. We tried to solve the

problem for 24 months, but we found that in this case the problem lacks of
minimizers in the four scenarios. A possible explanation for this �nding is that
production and inventories decisions are only made in the short run, because
�rms cannot forecast sales with precision beyond 12 months.
We remark that it is possible to calculate generalized solutions when the

problem lacks of minimizers; that is, the solution of problem (11) may be de-
scribed as a convex combination of Dirac measures supported in the global min-
ima of the cost function. However, this issue is out of the scope of this paper and
it can be accomplished in future research. For future references see [23,24,27].

4.3.1 Optimal Solution with Stable Sales

We constructed the vector of stable sales using observed shipments growth be-
tween 1998 and 2000 for the food industry in the United States. We obtained
unique optimal solution when sales are stable; the order of magnitude of ex-
pression (30) is small -see Appendix A. Figure 3 presents optimal production
and inventories. The optimal decision consists in producing more than the de-
manded output in the �rst periods, resulting in an accumulation of inventories.
In the subsequent periods, the �rm must decrease its production below de-
manded output; then, it must satisfy sales with accumulated inventories. The
stock of inventories diminishes on the last months in order to avoid the higher
costs this holding implies.

4.3.2 Optimal Solution with Ascending Sales

When sales increase, we obtained unique optimal solutions; the order of mag-
nitude of expression (30) is small - see Appendix A. Figure 4 presents optimal
production and inventories for this scenario. The former increases with sales
and its level is above demand in the �rst periods, resulting in an accumulation
of inventories. After month 10, the �rm must decrease its output, satisfying
sales with its holding of inventories. We remark that the accumulation of in-
ventories is higher than in the previous scenario, in order to satisfy ascending
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Figure 3: Optimal solution with stable sales

sales; however, as in the stable sales scenario, the �rm decreases its holding of
inventories in the �nal periods in order to avoid the higher costs it implies.

4.3.3 Optimal Solution with Descending Sales

When sales decrease, we found no minimizers; the order of magnitude of ex-
pression (30) is huge -see Appendix A. A possible explanation for this �nding is
that when demand diminishes with a constant rate along 12 months, it is hard
for the �rm to avoid the costs of decreasing sharply production or increasing
rapidly its holding of inventories. These results seems coherent, since it may be
unsustainable for any �rm to face persistent decreasing sales.

4.3.4 Optimal Solution with Variable Sales

We found unique minimizers when sales are variable -see Appendix A. Figure 5
presents optimal production and inventories. In this case, the higher variance of
the demand is absorbed by inventories, which vary more than optimal output.
This supports the production smoothing model, which states that when �rms
hold inventories, production may not respond fully to changes in sales. As we
mentioned in section 2, the introduction of non-convexities in the cost function
where motivated by the failure of this model; that is, the empirical facts evidence
that �rms do not smooth production, contradicting our �ndings. This may
be due to the huge variance of our theoretical sales, which is higher than the
variance of real sales; in fact, the rate of growth of real sales were used to
construct the stable sales vector in the �rst scenario. This �nding constitutes
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Figure 4: Optimal solution with ascending sales

a contribution to the production smoothing model: it is fully functional only
when sales are highly variable.
The optimal decision consists in producing more when sales are low, allowing

the accumulation of inventories. When demand rises sharply, the �rm satis�es
it not by increasing production but by using its accumulated inventories. In the
last month the �rm must decrease its holding of inventories in order to avoid
higher costs.

5 Concluding Remarks

In this work we have proposed a new method for solving explicitly the control
inventory problem, where the �rm chooses the level of production and inven-
tories which minimizes the discounted present value of its costs. Our problem
is a simple version of the one studied in [29], where the instantaneous cost
function is a non-convex odd-degree polynomial in the control variable (produc-
tion). Since the k-time objective function is non-convex, the minimum principle
for discrete-time problems cannot provide su¢ cient conditions for optimality.
Hence, following [27], we apply the Method of Moments to our problem and
provide necessary and su¢ cient conditions for the existence of minimizers of
the original problem, by using particular features of the minimizers of its re-
laxed, convex formulation. We apply the computational tools for solving the
relaxed problem in four di¤erent scenarios: stable, descending, ascending and
highly variable sales.
The calculations outline the existence of minimizers when the number of
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Figure 5: Optimal solution with variable sales

periods is 12 months, but not when it is 24. A possible explanation for this
�nding is that production and inventories decisions are only made in the short
run, because �rms cannot forecast sales with precision beyond 12 months. Also
we found that the problem lacks of minimizers when it faces descending sales
along the 12 months; a possible explanation is that it is hard for the �rm to
avoid the costs of decreasing sharply production or increasing rapidly its holding
of inventories.
The optimal decision with stable and ascending sales consists in producing

above the e¤ective demand, allowing for accumulation of inventories; in the sub-
sequent periods the �rm diminishes its production and sales are satis�ed with
accumulated inventories. Thus, the �rm diminishes its holding of inventories in
the last period in order to avoid the higher costs this implies. We found that
when sales are highly variable the production smoothing model is functional:
when the demand of output is low �rms produce above it, allowing the accu-
mulation of inventories; when demand rises sharply, the �rm satis�es it not by
increasing production but by using its accumulated inventories, that is, �rms do
smooth production. This constitutes a contribution to the production smooth-
ing model, in the sense it explains why it appear to failure when it is confronted
with the data: real sales are not as variable as our theoretical sales.
For future research, this work can be extended calculating the generalized

solutions when the inventory control problem lacks of minimizers. Also, price
shocks and error terms can be included in the cost function, eliminated from the
original objective function proposed in [29]; we suppressed those terms because
its inclusion entail the analysis of stochastic optimization problems, which is
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beyond the scope of this paper. The reincorporation of those terms prevents us
to assume any uncertainty between agents. Besides, in this work we truncated
the original problem presented in [29] in order to apply the minimum princi-
ple for discrete-time problems; it would be interesting to analyze the control
of inventories under non-convex polynomial cost functions as an in�nite time
horizon problem, using the dynamic programming algorithm and the Method
of Moments.
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A Dirac Measure Moments Testing

Month Stable sales Ascending sales
k (m�

1k)
2 �m�

2k (m�
1k)

3 �m�
3k (m�

1k)
2 �m�

2k (m�
1k)

3 �m�
3k

1 0.0000 0.0009 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 -0.0000 0.0000
4 0.0000 0.0000 -0.0000 0.0000
5 0.0000 0.0000 -0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 -0.0000 -0.0000
9 0.0000 0.0000 -0.0000 -0.0000
10 0.0000 0.0000 0.0000 0.0000
11 0.0000 0.0000 0.0000 -0.0000
12 0.0000 0.0000 0.0000 -0.0000

Table 2: Dirac measure moments testing for Scenarios 1 and 2
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Month Descending sales Variable sales
k (m�

1k)
2 �m�

2k (m�
1k)

3 �m�
3k (m�

1k)
2 �m�

2k (m�
1k)

3 �m�
3k

1 0.1298 17.9 0.0000 0.0000
2 2.1283 277.1 0.0000 0.0003
3 0.8835 108.8 0.0000 0.0003
4 0.2598 30.5 0.0000 0.0000
5 0.0017 0.1 0.0000 0.0001
6 0.2569 27.1 0.0000 0.0002
7 0.4981 49.0 0.0000 0.0007
8 0.6760 62.0 0.0000 0.0000
9 0.6356 55.0 0.0000 0.0001
10 0.3694 30.9 0.0000 0.0000
11 0.0579 4.8 0.0000 0.0011
12 0.3866 33.4 0.0000 0.0001

Table 3: Dirac measure moments testing for Scenarios 3 and 4
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