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Abstract

We propose an alternative method for computing effectively the so-
lution of non-linear, fixed-terminal-time, optimal control problems when
they are given in Lagrange, Bolza or Mayer forms. This method works
well when the nonlinearities in the control variable can be expressed as
polynomials. The essential of this proposal is the transformation of a non-
linear, non-convex optimal control problem into an equivalent optimal
control problem with linear and convex structure. The method is based
on global optimization of polynomials by the method of moments. With
this method we can determine either the existence or lacking of minimiz-
ers. In addition, we can calculate generalized solutions when the original
problem lacks of minimizers. We also present the numerical schemes to
solve several examples arising in science and technology.
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1 Introduction

In this work we are concerned with non-linear, optimal control problems with
fixed terminal time, given in the general Lagrange or Bolza forms:

min
u

∫ 1

0

f(x, t, u)dt + F (x(1))

s.t. ẋ = g(x, t, u)
x(0) = x0

x ∈ Rn, u ∈ R,

(1)

where the functions f and g can be expressed as polynomials in the control
variable. In general we have:

f(x, t, u) =
N1∑
k=0

ak(x, t)uk

g(x, t, u) =
N2∑
k=0

ck(x, t)uk

(2)

where the highest degree K = max{N1, N2} must be even and aN1 , cN2 > 0 in
order to guarantee the coercivity of the Hamiltonian of the problem (1). We
assume existence and continuity of fx, gx, Fx and continuity on f , g and F .
Although expression (1) refers to optimal control problems in Lagrange and
Bolza forms, all the arguments and results of our proposal also work well on
optimal control problems given in Mayer form. The non-linear, non-convex
form of the control variable, prevents us to use the Hamilton equations of the
maximum principle and non-linear mathematical programming techniques on
them. Both approaches would entail severe difficulties, either in the integration
of the Hamilton equations or in the search method of any numerical optimization
algorithm. As an alternative approach for dealing with this kind of problems
we propose to convexify the control variable by using the method of moments in
the polynomial expressions (2). Thus, we introduce a linear, convex relaxation
of (1) in the following form:

min
m(t)

∫ 1

0

N1∑
k=0

ak(x, t)mk(t) dt + F (x(1))

s.t. ẋ =
N2∑
k=0

ck(x, t)mk(t)

x(0) = x0

(3)

where the new control variable is the vector m, whose entries must represent
the algebraic moments of a probability measure supported on the real line of
the control variable u. See [1, 2, 16, 29, 30, 31, 53] for classical and modern
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results on the problem of moments and [17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 53, 54, 55, 56, 57, 58, 59, 60, 61] for recent results on global optimization
of polynomial expressions by the characterizations of moments. Convexification
of non-convex, optimal control problems by using probability measures is a well
known tool exploited by other authors [3, 4, 5, 8, 9, 10, 11, 12, 13, 14]. What
is new in this approach is the convexification of the control variable by using
moment variables, which allow us to obtain an equivalent, convex formulation
more appropriated to be solved by high performance numerical computing. It is
striking the fact that the solution of the convex, discrete, formulation provides
important information about the existence and behavior of the minimizers of the
original non-linear, optimal control problem. Indeed, as formulation (3) takes
the form of a convex, optimal control problem, we can certify the existence of
minimizers and estimate them numerically by mathematical programming. In
this work we will characterize the existence of minimizers of (1) according to
one particular algebraic form in the minimizers of (3). In this way we obtain
a practical method for estimating minimizers of (1) and at the same time, a
practical method for certifying either existence or lacking of minimizers of (1)-
(2). Finally, we stress the importance of the computational aspects of our
proposal for high performance optimization. On one hand, we must use very
specialized computational tools for obtaining numerical solutions of the relaxed
model (3). We address this point in Section 4. On the other hand, by following
this proposal, practitioners will be able to model and simulate many non-linear
situations in science and engineering. We present a few examples of them in
Section 4. Thus, we pave the way for analise, solve and simulate important
families of non-linear, optimal control problems like non-holonomic constraints
in robotics, sub-Riemannian geodesics and Lie brackets in geometric control,
sliding modes and solid phase microstructures in structural design. See [46, 47,
48, 49, 50, 51, 52, 62].

The present paper is organized as follows. In Section 2 we describe the
convexification of polynomial expressions by the method of moments and its
implications in the analysis of optimal control problems given in the form (1) -
(2). Section 3 explains the transformation of these problems into the equivalent
formulation (3). We give necessary and sufficient conditions for the existence
of minimizers of (1) - (2) by using particular features of the minimizers of the
convex formulation (3). In Section 4 we solve several examples which entail
high demanding numerical tasks. We finish with a short conclusion in Section
5. Section 6 includes a short afterword about the new born community on
optimization of polynomials with moments.

3



2 Convexification of polynomial expressions

Let f and g be the polynomials shown in (2), so the Hamiltonian H of the
optimal control problem (1) must have a polynomial form in the control variable
u:

H = H (x, t, p, u) =
K∑

k=0

αk (x, t, p)uk (4)

where K = max {N1, N2}. Thus, the global minimization of H in u:

min
u

H (u) =
K∑

k=0

αkuk (5)

is a problem well suited to be solved by the method of moments [17, 18, 19, 20,
21, 22, 24, 25, 54, 56, 57, 58, 59, 60, 61]. The essentials of this method follow.

For solving non-convex polynomial programs like (5), we can use the convex
hull of the graph of the polynomial H provided it be a coercive function, that
is: αK > 0 with even K. We can describe such convex set in the following way:

co (graph(H)) =
{∫

R

(u, H (u)) dµ (u) : µ ∈ P (R)
}

, (6)

where P (R) stands for the family of all probability Borel measures supported
in the real line.

Theorem 1 Let H (u) be an even degree, algebraic polynomial whose leader
coefficient αK is positive, then we can express the convex hull of the graph of H
as given in (6).

To prove this result, apply the separation theorem of convex analysis. Once
we have characterised the convex hull of the graph of H, we can obtain the set
of all global minima of H by noticing that:

argmin(H) ⊆ argmin(Hc)

where Hc stands for the convex envelope of H. Since H is a coercive polynomial,
notice that

co (graph (H)) = Epigraph (Hc) .

Then, we can pose the global optimization problem (5) as the following opti-
mization problem defined in probability measures:

min
µ∈P (R)

∫
R

H (u) dµ (u) (7)

whose solution is the family of all probability measures supported in argmin(H).
See [17].
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Theorem 2 [17, 24, 25] When H is coercive, the set of solutions of (7) is the
set of all probability measures supported in the set of global minima of H, i.e.
argmin(H).

Corollary 3 [17, 24, 25] When argmin(H) is the singleton {u∗}, the Dirac
measure: µ∗ = δu∗ is the unique solution of (7).

Now we use the polynomial structure of the objective function H in order to
transform the optimization problem (7) into the following optimization problem:

min
m∈M

K∑
k=0

αkmk

where M is the convex set of all vectors in RK+1 whose entries are the alge-
braic moments of a probability measure supported in the real line. Although
this formulation seems very attractive due to the linear form of the objective
function and the convex structure of the feasible set, it is still a theoretical
formulation not very useful if we do not properly characterize the feasible set
composed of moment vectors: M . However, this is precisely the question of the
classical Truncated Hamburger Moment Problem [1, 2, 16]. Its solution is easily
summarized as follows: the closure of M is composed of all vectors in RK+1

whose entries form a positive semidefinite Hankel matrix [16, 23, 27, 29, 30]:

M = {(mi)
K
i=0 ∈ RK+1 : (mi+j)

K
2

i,j=0 is positive semidefinite with m0 = 1}.

This result allows us to transform the problem (7) into the mathematical pro-
gram:

min
m

K∑
k=0

αkmk s.t. (mi+j)
K
2

i,j=0 ≥ 0, with m0 = 1 (8)

which has the form of a semidefinite program. See [23, 38] for an introduction
to conic and semidefinite programming.

Theorem 4 [24, 25] When H is a coercive polynomial, the set of solutions of
(8) is the set of all vectors m∗ ∈ RK+1 whose entries are the algebraic moments
of some probability measure supported in argmin(H), which is a finite set with
K
2 points at the most.

Corollary 5 [17] When H is a coercive polynomial with a unique global mimi-
mum u∗, the program (8) has a unique solution m∗ ∈ RK+1 composed by the al-
gebraic moments of the Dirac measure δu∗ . Thus, m∗

k = (u∗)k, for k = 0, . . . ,K.

Hence, the global minimization of the Hamiltonian H can be formulated as:

min
m

H̃(x, t, p,m) =
K∑

k=0

αk (x, t, p) mk s.t. (mi+j)
K
2

i,j=0 ≥ 0, with m0 = 1

(9)
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where the variables x, t and p are fixed. Notice that any solution m∗(x, t, p)
of (9) is composed of the algebraic moments of some probability measure sup-
ported in argmin(H(x, t, p)). Since argmin(H(x, t, p)) is finite, m∗(x, t, p) can
be expressed as

m∗ =
K′∑
i=1

λi(1, υi, υ
2
i , . . . , υK

i ) (10)

where argmin(H(x, t, p)) = {υ1(x, t, p), υ2(x, t, p), . . . , υK′(x, t, p)} with K ′ ≤
K
2 . Therefore, if argmin(H) is the singleton {u∗(x, t, p)}, the optimal control
can be expressed as:

u∗(x, t, p) = m∗
1 (x, t, p)

because the entries of m∗(x, t, p) are the moments of the Dirac measure δu∗(x,t,p).
In this work we will solve the non-linear, non-convex problem (1)-(2) by working
out its convex relaxation:

min
m(t)

∫ 1

0

N1∑
k=0

ak(x, t)mk(t) dt + F (x(1))

s.t. ẋ =
N2∑
k=0

ck(x, t)mk(t)

x(0) = x0

(mi+j(t))
K
2

i,j=0 ≥ 0, with m0 (t) = 1

∀t ∈ (0, 1) .

(11)

We highlight the fact that the semidefinite program (9) corresponds to the
optimization of the Hamiltonian of the convex formulation (11):

H̃ = H̃ (x, t, p,m) =
N1∑
k=0

ak (x, t) mk + pt ·
N2∑
k=0

ck(x, t)mk =
K∑

k=0

αk (x, t, p) mk.

Indeed, this is precisely the relaxation in moments of the global optimization of
the Hamiltonian H(x, t, p, u) when the variable u is transformed into the vector
m. Thus, every minimizer of the convex formulation (11) attains the minimum
value of the non-linear optimal control problem (1)-(2). In the following section
we will analyze the connections between the original non-linear, optimal control
problem (1)-(2) and its convex relaxation (11).
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3 Analysis of the problem

We present here some analytical aspects of the formulation (11) and its relations
with the existence of minimizers of the non-linear problem (1)-(2). We face the
question of the existence of minimizers from the point of view of absolutely
continuous functions [3, 5, 6, 10, 14, 42, 45]. Since relaxation (11) is an optimal
control problem with convex structure in the control variable m, we can suppose
under mild assumptions that (11) has a minimizer m∗ [4, 5, 7, 10, 11, 42].
We will show that the minimizers m∗ of the formulation (11) may determine
the existence of minimizers of the non-linear optimal control problem (1)-(2).
Moreover, we can estimate minimizers of (1)-(2) by calculating the solution of
the convex formulation (11). Now we state the first result of our work.

Theorem 6 Let us assume that u∗(t) is a minimizer of the optimal control
problem (1)-(2), then the control vector m∗(t) given as:

m∗
k(t) = (u∗(t))k ∀ k = 0, . . . ,K (12)

is a minimizer of the formulation (11).

Proof. Since u∗(t) is an optimal control for (1) under the form (2), the
maximum principle claims that u∗(t) satisfies the global minimization problem:

H (x∗(t), t, p∗(t), u∗(t)) = min
u∈R

H(x∗(t), t, p∗(t), u) (13)

where x∗(t) and p∗(t) satisfy the boundary value problem:

dx

dt
= g(x, t, u∗(t))

dp

dt
= −∂H

∂x
(x, t, p, u∗(t))

x(0) = x0, p(1) =
∂F

∂x

(
x(1)

)
.

(14)

On the other hand, the Hamiltonian function H has the polynomial form (4)
and u∗(t) solves the global minimization problem (13), therefore the vector
m∗(t) ∈ Rk+1 given as:

m∗
k(t) = (u∗(t))k

k = 0, . . . ,K

solves the semidefinite program:

min
m∈M

H̃(x∗(t), t, p∗(t),m) (15)

where the functions x∗(t), p∗(t) in (15) come from the solution of the boundary
value problem (14). Since g and ∂H

∂x in (14) have a polynomial form in the
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variable u∗, and every appearance of the k-th power of u∗(t) can be replaced by
m∗

k(t), then the boundary value problem (14) can be expressed as

dx∗

dt
= g̃(x∗(t), t,m∗(t))

dp∗

dt
= −∂H̃

∂x
(x∗(t), t, p∗(t),m∗(t))

x(0) = x0, p(1) =
∂F

∂x

(
x(1)

) (16)

where g̃(x, t,m) =
∑N2

k=0 ck(x, t)mk and ∂H̃
∂x is the formal partial derivative of

H̃ with respect to the variable x. As m∗(t) solves (15) and x∗(t), p∗(t) satisfy
(16) we have:

H̃(x∗(t), t, p∗(t),m∗(t)) = min
m∈M

H̃(x∗(t), t, p∗(t),m) (17)

which is the maximum principle’s necessary condition of the convex formulation
(11). Since the relaxation (11) is convex, the maximum principle’s necessary
conditions are also sufficient to guarantee optimality. Thus, m∗(t) is a minimizer
of (11).

Corollary 7 If m∗ is a minimizer of (11) satisfying (12), m∗
1(t) is a minimizer

of (1)-(2).

These results settle a correspondence between the minimizers of (1) and
the minimizers of (11) satisfying (12). Thus, problem (1) admits a unique
minimizer if and only if its formulation (11) has a unique minimizer satisfying
(12). This situation is particularly convenient in order to calculate minimizers
of (1), because we only have to solve the convex formulation (11) which is
more appropriated to be handled by high performance, non-linear programming
techniques.

Corollary 8 If all the minimizers of the formulation (11) do fail in satisfying
the expression (12), then the problem (1)-(2) does lack of minimizers.

This result provides a practical method to certify the lack of minimizers
in particular non-convex, optimal control problems given in the form (1)-(2).
Although it is an expensive computational task, we can determine the lack
of minimizers in (1) by checking all the minimizers of (11). We will present
some examples in the following section. On the other hand, under particular
conditions on the Hamiltonian H we can certify existence of minimizers for (1).

Corollary 9 If the Hamiltonian H(x, t, p, u) is coercive and it has a unique
global minimum in u irrespective of the values of x, t and p, then every min-
imizer of the formulation (11) has the form (12). Hence, (1) has at least a
minimizer.
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Proof. Let us assume that m∗ is a minimizer of (11). According to the maxi-
mum principle, m∗ satisfies (17) where x∗(t) and p∗(t) satisfy the boundary value
problem (16). Since the optimal control vector m∗ is composed of the moments
of the Dirac measure supported in the singleton argmin(H(x∗(t), t, p∗(t))), m∗

has the form (12).

Corollary 10 When H(x, t, p, u) is coercive and strictly convex in u, (1) has a
minimizer.

This corollary is well known in control theory, see [4, 5, 10, 11, 14]. We would
like to remark that formulation (11) provides additional information of (1) in
the sense of Young generalized curves [3, 4, 5, 9, 14]. Let us assume that m∗ is
a minimizer of (11), therefore m∗ satisfy (17) where x∗ and p∗ in turn satisfy
the boundary value problem (16). Then, the entries of m∗ are the moments of
some probability measure supported in argmin(H(x∗(t), t, p∗(t))), which is a
finite set with K ′ ≤ K

2 points, i.e.

m∗(t) =
K′∑
i=1

λi(t)(1, υi(t), υ2
i (t), . . . , υK

i (t)) (18)

where argmin(H(x∗(t), t, p∗(t))) = {υ1(t), . . . , υK′(t)} and
∑K′

i=1 λi(t) = 1 with
λi(t) ≥ 0 for i = 1, . . . ,K ′. As the functions g̃ and ∂H̃

∂x in (16) are linear in the
variable m, it is easy to see that functions λ and υ satisfy the global optimization
problem

minλ∈∆K ,υ∈RK H(x∗(t), t, p∗(t), λ, υ) =
K∑

i=1

λiH(x∗(t), t, p∗(t), υi) (19)

where ∆K is the basic (K − 1)-simplex in RK . Thus, the functions {λi} and
{υi} determine the generalized solution

∑K′

i=1 λi(t)υi(t) of (1) because the set
of differential equations in (16) transforms into:

dx∗

dt
=

K′∑
i=1

λi(t)g(x∗(t), t, υi(t))

dp∗

dt
= −

K′∑
i=1

λi(t)
∂H

∂x
(x∗(t), t, p∗(t), υi(t)).

(20)

Summarizing, we propose the formulation (11) as a particular convex relax-
ation of (1) which can be solved by high-performance, numerical methods for
convex mathematical programs. Its solution provides either the minimizers of
(1) or its optimal generalized curves. This method allows us to deal with high-
demanding, non-linear, non-convex problems arising in several fields of science
and technology.
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4 Computational Treatment

Now we focus on the computational estimation of the solution of the formulation
(11) as a non-linear mathematical program. We take a discrete net of points
t0, . . . , tν on the interval time [0, 1], a set of design variables m (tr) intended
to represent the control variables m ∈ RK+1 and the variables x (tr) intended
to represent the state variables x ∈ Rn. When the points tr are uniformly
distributed on the interval [0, 1], we obtain the mathematical program:

min
m,x

ν−1∑
r=0

∫ (r+1)h

rh

N1∑
k=0

akmk(r) dt

s.t.
xr − xr−1

h
=

N2∑
k=0

ckmk(r) ∀r = 1, . . . , ν

m0(r) = 1 ∀r = 0, . . . , ν

(m(i+j)(r))
K/2
i,j=0 ≥ 0 ∀r = 0, . . . , ν

(21)

where h is the uniform distance between the discrete net points. In order to
represent the matrix inequality condition as a set of non-linear inequalities, we
use the fact that all principal subdeterminants of a positive semidefinite matrix
are nonnegative [40]. Then, the matrix inequality condition

(mi+j (r))
K
2

i,j=0 ≥ 0 (22)

is expressed as a set of non-linear inequality constraints:

Dσ (m (r)) ≥ 0 ∀σ = 1, . . . , π, r = 0, . . . , ν

where Dσ is the explicit form of every principal subdeterminant of the Hankel
matrix in (22) and π is the number of its principal subdeterminants. In this way,
we have transformed the optimal control problem (1) into a non-linear, convex,
mathematical program. Notice that coefficients ak and ck may depend on x
and t. In order to solve this kind of high dimensional, non-linear mathematical
programs, we use standard professional software based on Quasi-Newton , Least
Squares, Gauss-Newton, Sequential Quadratic Programming and Trust Region
Methods [34, 41, 43, 44].

4.1 Commented Results

We explain in full detail several examples of non-linear optimal control problems
analyzed by the method of moments proposed here.
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4.1.1 Example 1

We illustrate the success of the method proposed in this work by solving the
following optimal control problem:

min
u(t)

∫ 1

0

(x− 10t)2 dt

s.t. ẋ = u2 − ux + x

x(0) = 0

(23)

where the cost function is intended to find the best trajectory to approximate
the straight line t → 10t on the interval [0, 1]. Its convex formulation (11) takes
the form:

min
m

∫ 1

0

(x− 10t)2 dt

s.t. ẋ = m2 −m1x + x[
1 m1(t)

m1(t) m2(t)

]
≥ 0

∀t ∈ [0, 1], x(0) = 0.

(24)

Next we write down this formulation as the discrete, non-linear mathematical
program:

min
(m,x)

ν∑
r=1

[
(xr − 10rh)2 + (xr−1 − 10(r − 1)h)2

] h

2

s.t.
xr − xr−1

h
= m2(r)−m1(r)xr + xr[

1 m1(r)
m1(r) m2(r)

]
≥ 0 for r = 1, . . . , ν and x0 = 0.

(25)

Figure 1(a) compares our result against the trajectory that we should follow.
Figure 1(b) shows the optimal control that we obtain from the first moment m∗

1.
This is indeed a minimizer as m∗ satisfies the condition (12).

4.1.2 Example 2

Here we focus on the optimal control problem

min
u(t)

∫ 1

0

(x− t2)2 dt

s.t. ẋ = u2 − ux + x

x(0) = 0

(26)

which is intended to approximate the curve t → t2 under the same, non-linear
control system of the Example 1. The results obtained in this case are summa-
rized in Figure 2.
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(a) Following the path t→ 10t (b) Optimal control

Figure 1: Non-linear control system ẋ = u2 − ux + x.

(a) Following the path t→ t2 (b) Optimal control

Figure 2: Non-linear control system ẋ = u2 − ux + x.

4.1.3 Example 3

Now we analyze a non-linear, non-convex control system with two state variables
and some particular cost function intended to follow the path: t → (t, t) in the
x-y plane.

min
u(t)

∫ 1

0

(x− t)2 + (y − t)2 dt

s.t. ẋ = u

ẏ = (1− u2)2 + x2

x(0) = 0, y(0) = 0.

(27)

We can not apply here numerical integration on the Hamilton equations since
the Hamiltonian is a non-linear, non-convex expression of the control variable
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u. The convex formulation (11) of this problem is:

min
(m,x)

∫ 1

0

(x− t)2 + (y − t)2 dt

s.t. ẋ = m1

ẏ = 1− 2m2 + m4 + x2 1 m1(t) m2(t)
m1(t) m2(t) m3(t)
m2(t) m3(t) m4(t)

 ≥ 0

∀t ∈ (0, 1), x(0) = 0, y(0) = 0.

(28)

The corresponding discrete model takes the following form:

min
(m,x,y)

ν∑
r=1

[
(xr − rh)2 + (yr − rh)2 + (xr−1 − (r − 1)h)2 + (yr−1 − (r − 1)h)2

] h

2

s.t.
xr − xr−1

h
= m1(r)

yr − yr−1

h
= 1− 2m2(r) + m4(r) + x2

r 1 m1(r) m2(r)
m1(r) m2(r) m3(r)
m2(r) m3(r) m4(r)

 ≥ 0 ∀r = 1, . . . , ν

withx0 = 0, y0 = 0
(29)

whose solution for ν = 20 points is given in the Figure 3. It is worth noticing
here that we use a cost functional intended to follow the parametrized curve
t → (t, t) in the (x, y) plane.

(a) two state variables: x and y (b) Optimal control

Figure 3: Non-linear optimal control problem.
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4.1.4 Example 4

We use the same cost function of the previous example, but we introduce here
a different non-linear, non-convex control system:

min
u(t)

∫ 1

0

(x− t)2 + (y − t)2 dt

s.t. ẋ = u

ẏ = (1− u)2(2− u)2 + x2

x(0) = 0, y(0) = 0.

(30)

By taking ν = 20 points in the discrete model, we obtain the results summarized
in Figure 4.

(a) two state variables: x and y (b) Optimal control

Figure 4: Non-linear, non-convex control system.

4.1.5 Example 5

We present here a particular case taken from control engineering in which we
must minimize the steady state error. The corresponding optimal control prob-
lem is:

min
u(t)

∫ 1

0

(x− 1)2 + (y − 0.7)2 dt

s.t. ẋ = u

ẏ = u2(1− u2)2 + x(u2 − 1
2
)

x(0) = 0, y(0) = 0.

(31)
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Its convex formulation follows:

min
(m,x,y)

∫ 1

0

(x− 1)2 + (y − 0.7)2 dt

s.t. ẋ = m1

ẏ = m2 − 2m4 + m6 + xm2 −
x

2
1 m1(t) m2(t) m3(t)

m1(t) m2(t) m3(t) m4(t)
m2(t) m3(t) m4(t) m5(t)
m3(t) m4(t) m5(t) m6(t)

 ≥ 0

∀t ∈ [0, 1]
and x(0) = 0, y(0) = 0 .

(32)

Its discrete model is:

min
(m,x,y)

ν∑
r=1

(
(xr − 1)2 + (xr−1 − 1)2 + (yr − 0.7)2 + (yr−1 − 0.7)2

) h

2

s.t.
xr − xr−1

h
= m1(r)

yr − yr−1

h
= m2(r)− 2m4(r) + m6(r) + xrm2(r)−

xr

2
1 m1(r) m2(r) m3(r)

m1(r) m2(r) m3(r) m4(r)
m2(r) m3(r) m4(r) m5(r)
m3(r) m4(r) m5(r) m6(r)

 ≥ 0 ∀r = 1, . . . , ν

and x0 = 0, y0 = 0.
(33)

The results are shown in Figure 5. Certainly, the steady error has been elimi-
nated. See [35, 36, 37].

4.1.6 Example 6

We propose here a non-linear, non-convex Mayer problem:

min
u

(x(1)− 0.5)2 + (y(1)− 0.5)2

s.t. ẋ = u

ẏ = (1− u)2(2− u)2 + x2

x(0) = 0, y(0) = 0.

(34)
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m∗
1 m∗

2 m∗
3 m∗

4 m∗
2 − (m∗

1)
2 m∗

3 − (m∗
1)

3 m∗
4 − (m∗

1)
4

0.01 0.001 0.0001 0.0001 0.00 0.00 0.00
0.5613 0.3175 0.1831 0.1097 0.00 0.01 0.01
0.5685 0.3244 0.1878 0.1108 0.00 0.00 0.01
0.5646 0.3246 0.1947 0.1278 0.01 0.01 0.03
0.5641 0.3238 0.1967 0.1398 0.01 0.02 0.04
0.5641 0.3232 0.1971 0.1471 0.00 0.02 0.05
0.5642 0.3229 0.197 0.1507 0.00 0.02 0.05
0.5643 0.3228 0.1966 0.1513 0.00 0.02 0.05
0.5647 0.3229 0.1959 0.149 0.00 0.02 0.05
0.5653 0.3231 0.1946 0.1438 0.00 0.01 0.04
0.5664 0.3235 0.1925 0.1351 0.00 0.01 0.03
0.5684 0.3244 0.1891 0.121 0.00 0.01 0.02
0.5685 0.3231 0.1854 0.1064 0.00 0.00 0.00
0.5627 0.3166 0.1797 0.1021 0.00 0.00 0.00
0.5542 0.3071 0.1717 0.096 0.00 0.00 0.00
0.5421 0.2939 0.1607 0.0879 0.00 0.00 0.00
0.5254 0.276 0.1464 0.0777 0.00 0.00 0.00
0.5019 0.2518 0.1281 0.0653 0.00 0.00 0.00
0.4753 0.2256 0.1112 0.0537 0.00 0.00 0.00
0.4445 0.1969 0.0941 0.0702 0.00 0.01 0.03

Table 1: Dirac measure moments testing

Its convex formulation is:

min
m,x,y

(x(1)− 0.5)2 + (y(1)− 0.5)2

s.t. ẋ = m1

ẏ = 4− 12m1 + 13m2 − 6m3 + m4 + x2 1 m1 m2

m1 m2 m3

m2 m3 m4

 ≥ 0

x(0) = 0, y(0) = 0.

(35)

Figure 6 shows the results obtained after solving the corresponding mathemat-
ical program.
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m1 m2 m3 m4

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

Table 2: Table of moments which are not implied by a Dirac measure

4.1.7 Example 7

The following non-convex, optimal control, Mayer problem

min
u

(x(1) + 3.5)2 + (y(1) + 1.75)2

s.t. ẋ =
1
2
u2(u− 4) +

3
4
(u− 5)

ẏ = x

x(0) = 0, y(0) = 0

(36)

is intended to find the optimal control which will take the state variables to a
precise point in a determined time. Figure 7 shows the results.

4.1.8 Example 8

Consider two coupled water storage tanks whose capacities are C1 and C2 re-
spectively. There are two valves, one of them has resistivity R1 and connects
both tanks, the other one controls the outward flow of the second tank with
resistivity R2. The inward flow of water into the first tank is w and it is admin-
istered by an electro-valve, which in turn is driven by an input voltage u. The
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(a) two state variables: x and y (b) Optimal control

Figure 5: Steady state error minimization

(a) two state variables: x and y (b) Optimal control

Figure 6: Non-convex Mayer problem

operation of the electro-valve can be represented by the non-linear, non-convex
expression:

w = (4− u2)2. (37)

The dynamics of this system is:[
ḣ1

ḣ2

]
=

[
− 1

R1C1

1
R1C1

1
R1C2

−
[

1
R1

+ 1
R2

]
1

C2

] [
h1

h2

]
+

[
1/C
0

]
(4− u2)2. (38)

In order to minimize the system’s control effort and to reach a precise amount
of water in a fixed time, we must minimize the expression:∫ 1

0

u2dt + (h1(1)− 0.5)2 + (h2(1)− 0.2)2. (39)

Figures 8(a) and 8(b) show the results obtained by the method of moments.
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(a) two state variables: x and y (b) Optimal control

Figure 7: Non-convex Mayer problem.

(a) Amount of water in each tank (b) Optimal control

Figure 8: Non-linear flow control.

4.2 Existence of minimizers and generalized solutions

When m∗(t) is a minimizer of (11), not necessarily the function m1(t)∗ is a
minimizer of (1). This is true only when m∗ is the vector of moments of a Dirac
measure. Thus, in practice, to guarantee that we are obtaining true minimizers
of (1), we must check that a particular minimizer of (11) satisfies (12). We have
verified this fact for every example presented in this section. Table 1 shows the
results of this verification procedure when applied to the results of the Example
6.

When a particular minimizer m∗ of (11) does not fulfill with the expression
(12), it still gives the generalized minimizers of (1). Consider the classical Bolza
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example in Calculus of Variations:

min
u

∫ 1

0

{φ(u) + x(t)2} dt + x(1)2

s.t. ẋ = u

x(0) = 0

(40)

where φ(u) = (1 − u2)2. After solving its convex formulation (11), we obtain
the m∗ minimizer shown in Table 2. Clearly, these values do not represent
the moments of a Dirac measure, so we conclude that problem (40) lacks of
minimizers after checking that its relaxed formulation (11) does not have any
other minimizers. In addition, we can see that the vector control m∗(t) is
composed by the moments of the two-points supported probability measure
1
2δ−1 + 1

2δ1. In this way, we obtain a generalized solution as 1
2δ−1 + 1

2δ1 for
every t ∈ [0, 1].
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5 Concluding Remarks

In this work we have proposed a new method for solving explicitly high de-
manding, non-linear, non-convex optimal control problems given in Lagrange,
Mayer or Bolza forms, provided they can be expressed in the general formulation
(1)-(2). From a theoretical point of view, we provide necessary and sufficient
conditions for the existence of minimizers of (1)-(2) by using particular features
of the minimizers of its relaxed, convex formulation (11). Even in the absence
of classical minimizers of (1)-(2), the solution of its relaxed formulation (11)
provides minimizers of (1)-(2) in the form of Young’s generalized curves. This
situation is particularly important in applications where practitioners must deal
with non-linear, non-convex, optimal control problems for design and simula-
tion. On the other hand, this work also provides numerical schemes to calculate
minimizers of non-linear, non-convex, optimal control problems described by
polynomials in science and engineering. To attain this task, scientists must
use specialized algorithms for convex optimization on high-demanding, discrete
models given as non-linear, convex mathematical programs. Finally, we remark
that the success of this method is based on the maximum principle of optimal
control theory and the global optimization of polynomial expressions carried out
by the method of moments.

6 Afterword

The method of moments in global optimization of polynomials has received a
good deal of attention from many outstanding researchers working actively in
optimization, operations research, computer sciences and control theory. As in-
stance, we would like to mention three recent and relevant events on this topic
which reveal how big is the interest on it, how fruitful are its applications and
how many people is engaged with it. They were the 8th International Workshop
on High Performance Optimization Techniques Optimization and Polynomi-
als, June 23-25, 2004, CWI, Amsterdam, Netherlands, the ADONET Doctoral
school Optimization over Polynomials and Semidefinite Programming, Septem-
ber 12-16, 2005, University of Klagenfurt, Austria and SIAM’s Conference on
Optimization, May 2005, Stockholm, Sweden. We would like to stress the pi-
oneer works on this topic of Jean B. Lasserre, LAAS-CNRS, Toulouse France,
Monique Laurent, CWI, Amsterdam, Netherlands and Pablo Parrillo, MIT,
Cambridge, U.S.A.. State of the art papers related with our work which will
help the reader to grasp the essentials of this new and amazing topic in modern
optimization are [17, 18, 19, 20, 21, 22, 53, 54, 55, 56, 57, 58, 59, 60, 61]. This
paper has been influenced in many ways for these works, their authors, other
colleagues who participated in different ways in these events and all the current
research in global optimization and control with moments. We apologize for not
having enough space for listing all of them here.
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