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Abstract

In this work we propose a general procedure for analyzing global minima of arbitrary
mathematical programs which is based in probability measures and moments theory.
We give a general characterization of global minima of arbitrary programs, and as a
particular case, we characterize the global minima of unconstrained one dimensional
polynomial programs by using a particular semidefinite program.
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1 Introduction

The Method of Moments is a general method for treating non convex optimization problems,
which is particularly well suited to cope with global optimization problems which come from
several research areas in Optimization Theory like Calculus of Variations, Control Theory
and Mathematical Programming. It has been successfully applied to non convex variational
problems and one dimensional polynomial programs. See [10], [11], [12] and [13] for different
applications of the Method of Moments. The Method of Moments takes a proper formulation
in probability measures of a non convex optimization problem. Thus, when the problem can
be stated in terms of polynomial expressions, we can transform the measures into algebraic
moments to obtain a new convex program defined in a new set of variables that represent the
moments of every measure. This procedure has been successfully employed for treating non
convex variational problems when we use their generalized formulation in Young measures.
See [11], [12] and [13].
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The application of the moments theory to optimization problems is not new in any
way, in fact it can be traced back to the works of Markov and Tchebychev, see [6] for an
interesting treatment of these ideas. Recently, other authors have proposed the use of the
moments theory to analyze non convex polynomial programs in global optimization, the
reader should refer the works of J.B. Lasserre given in references [7] , [8] and [9], the work
of Y. Nesterov in [14] and the work of N. Shor in reference [17].

The purpose of this work is to analyze the ability of the Method of Moments for treating
mathematical programs given in the general form

min
t∈Ω

f (t) (1)

where the objective function f (t) is a linear combination of simpler functions. We will
illustrate the success of this analysis by studying those cases in which the objective function
f is a one dimensional polynomial in some real interval Ω.

In order to properly use the Method of Moments, we must solve some particular Prob-
lem of Moments for every non convex mathematical program we are interested in. These
problems are really difficult to solve, and they make part of the classical repertory of fa-
mous problems in contemporary mathematics. A short review on the classical treatment
of the Problem of Moments can be found in [16]. In this paper, we describe how to solve
trigonometric and algebraic moment problems in arbitrary intervals Ω on the real line, by
using the classical characterizations of one dimensional positive polynomials in Ω. In this
way, we will show that the solution of a particular Problem of Moments in some interval Ω,
is obtained by constructing a corresponding positive semidefinite quadratic form from the
parameters of the domain Ω of the polynomial program (1) . This kind of characterizations
of finite sets of moments can be found in [4], [6], [14] and [16].

In order to solve a particular non convex polynomial program (1) , we can apply the
Method of Moments by transforming it into an equivalent convex program. This new
problem has a linear objective function, which is defined by the coefficients of the objective
function f and a convex feasible set, defined by the positivity of the quadratic form that
characterizes a finite set of moments. In this way, we obtain a semidefinite relaxation of
the original non convex program. The reader can find a good introduction for semidefinite
programming in [1] and [3]. Many authors call these relaxations LMI relaxations as they
are derived by using a single linear matrix inequality. See [7], [8] and [9].

We should strongly emphasize that this paper is not meant to be a pioneer paper on
semidefinite relaxations of polynomial programs as several accounts on the subject have
already been published i.e. [7],[8],[9],[14] and [17]. Nevertheless, our objective here is to
present a different approach to the subject by stressing the general span of the Method of
Moments as it is described in Section 2, where we obtain a general characterization of the
global minima of arbitrary non convex functions defined on arbitrary non convex domains.
See [10] for a complete analysis of this situation. On the other hand, the approach followed
in this paper relies on the analysis of the duality between a particular moment cone and
the corresponding cone of positive functions as it was proposed since Tchebychev times
and stated in [6], which allows us to apply the theory of the Method of Moments for
characterizing the global minima of a particular non convex polynomial program. It is very
important noticing here that other works on this subject use the duality of the theory of
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semidefinite programming in order to characterize the global optimum of one particular
polynomial program, see [8]. It is also very important stress here that these ideas can be
extended to higher dimensions where we must cope with constrained polynomial programs
involving several variables, this important goal has been recently attained by using Putinar’s
characterization of positive polynomials on semialgebraic sets in Rn. The reader can find a
complete account of these results in [7],[8] and [9].

The present paper is organized as follows. In Section 2 we will review the general theory
behind the Method of Moments, and we will deduce the most general results for global
optimization of non convex mathematical programs. In Section 3, we will explain how to
solve the classical one dimensional truncated moment problems. Indeed, we will see how to
solve the Hamburger’s Moment Problem, the Trigonometric Moment Problem, the Stieltjes
Moment Problem and the Hausdorff’s Moment Problem by reducing all of them to one of
the classical characterizations of one dimensional positive polynomials as has been proposed
by Curto and Fialkow in [4], by Krein and Nudelman in [6] and by Nesterov in [14]. Then
we will apply these results for analyzing one dimensional non convex polynomial programs.
Finally, we will give some comments and remarks in Section 4.

2 General Theory of the Method of Moments

In this paper we are concerned with the search of all global minima of a continuous function
f : Ω → R, defined in some arbitrary closed set Ω ⊂ Rn. This problem is particularly difficult
when no assumptions about the convexity of f or Ω are available. Nonetheless, progress in
this kind of problems can be achieved by using convex analysis and measure theory.

2.1 Basic Results

We will see here how we can analyze global optimization problems when its objective func-
tion f is expressed as a linear combination of simpler functions. This is the general idea of
many applications of the Method of Moments. We start by using a powerful result proposed
in [8] for global optimization of polynomials and also proposed in [12] for Young measures
relaxation of non convex variational problems.

2.1.1 Theorem

Let P (Ω) be the set of all regular Borel probability measures supported in a closed set
Ω ⊂ Rn, and let f be a bounded from below continuous function f : Ω → R, then

inf
µ∈P (Ω)

〈f, µ〉 = inf
t∈Ω

f (t) . (2)

Proof
By elementary integration we have that m ≤ 〈f, µ〉 for every probability measure µ, where
m = inft∈Ω f (t) . On the other hand, it is clear that 〈f, δtn〉 → m, where {tn} ⊂ Ω is a
minimizing sequence for the function f, and δt is the Dirac’s measure supported in the point
t.
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2.1.2 Theorem

Let G be the set of all global minima of the function f in Ω, then

〈f, µ∗〉 = inf
µ∈P (Ω)

〈f, µ〉 (3)

if and only if the support of µ∗ is contained in G.
Proof

It is easy to see that 〈f, µ∗〉 = m when µ∗ ∈ P (G) . We will verify that µ∗ ∈ P (G) when
〈f, µ∗〉 = m. Let us assume that t ∈ supp (µ) ∩ Gc, then f (t) > m. Since f is continuous,
there exists a neighborhood U of t such that f ≥ γ > m in U. On the other hand, µ (U) > 0
because t ∈ supp (µ) . So, 〈f, µ〉 =

∫
U fdµ +

∫
Uc fdµ ≥ γµ (U) + mµ (U c) > m.

From these results, it follows that we should use the generalized optimization problem
in measures

min
µ∈P (Ω)

〈f, µ〉 (4)

as an alternative formulation of the global optimization problem

min
t∈Ω

f (t) . (5)

Thus, we obtain a new optimization problem with two significant features in optimization,
namely, a linear objective function: µ → 〈f, µ〉 and a convex feasible set: P (Ω) . In addition,
this formulation includes all the information about the solution of the standard global
optimization problem (5) . Indeed, the set P (G) , which is composed of all probability
measures supported in G, is the solution set for the generalized problem (4) .

When the objective function f can be expressed by a linear combination of simpler
functions

f =
k∑

i=1

ciψi (6)

where {ψ1, . . . , ψk} is a basis of continuous functions in Ω, then every integral in (4) can be
expressed by an elementary dot product in Rk

〈f, µ〉 =
k∑

i=1

cixi = c · x (7)

whose factors are the coefficients vector c from the linear combination (6) and the moment
vector x whose entries

xi =
∫

ψidµ, for i = 1, . . . , k (8)

are the moments of the measure µ with respect to the basis functions {ψ1, . . . , ψk} . Every
moment vector x may also be expressed by integration in the following manner:

x = 〈T, µ〉 =
∫

Tdµ, (9)

where T is the non linear transformation T : Ω → Rk defined by the expression T (t) =
(ψ1 (t) , . . . , ψk (t)) . For convenience, henceforth we assume that application T is one to one.
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With the help of the transformation T, we can easily define the set

V = {〈T, µ〉, µ ∈ P (Ω)} (10)

which consists of all moment vectors of probability measures supported in Ω. Since the
application

µ → 〈T, µ〉 : P (Ω) → Rk (11)

is linear, we immediately observe that V is a convex set in Rk. In this way, we can represent
every measure µ ∈ P (Ω) by its respective moment vector x ∈ V. By using this representa-
tion, we can transform the generalized optimization problem (4) into the equivalent convex
program

min
x∈V

c · x (12)

whose solution set is the convex set

W = {〈T, µ〉 , µ ∈ P (G)} (13)

where G is the set of all global minima of the function f in Ω.

2.2 Interplay with Convex Analysis

It is remarkable that problem (12) is a convex mathematical program which encloses the
information about the global minima of the objective function f in Ω. In fact, it gives a non
trivial characterization of the global minima of the function f in the set Ω. Before we show
the solution to the global optimization problem (5) given by the convex program (12) , we
have to introduce additional results that link convex analysis and measure theory.

Since the image T (Ω) is contained in the Euclidean space Rk, its convex envelope can
be expressed as

co (T (Ω)) = {〈T, µ〉 , µ ∈ Q (Ω)} (14)

where Q (Ω) is the family of all finitely supported probability measures in Ω. This means
that co (T (Ω)) is just the set of moment vectors of finitely supported measures in Ω. Then,
co (T (Ω)) ⊂ V.

The theory of the Method of Moments uses a convenient interplay between measure
theory and convex analysis for describing the moment vector set V. In fact, from Carathe-
dory’s Theorem we know that every point of the convex hull co (T (Ω)) may be represented
by a convex combination with less than k + 2 terms. On the other hand, every regular
Borel probability measure can be approximated by discrete probability distributions whose
moment vectors belong to the convex hull co (T (Ω)) . In this way, we obtain a method for
approximating every point in V by convex combinations with a fixed number of terms. This
is the reason that explains why the Method of Moments works particularly well in many
practical applications. The following theorems confirm this remark.

2.2.1 Theorem

The convex hull co (T (Ω)) is dense in the moment vectors set V, so V = co (T (Ω)).
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Proof
For a µ-measurable positive function f, its integral 〈f, µ〉 is usually defined as the supremum
of all integrals 〈s, µ〉 , where every s is a simple function satisfying s ≤ f. A simple function
has the form s =

∑j
i=1 ciχAi where every Ai is a Borel set with characteristic function

χAi . The integral of s with respect to the measure µ is defined by the elementary sum
〈s, µ〉 =

∑j
i=1 ciµ (Ai) . Since f is continuous, the definition of the integral 〈f, µ〉 does not

change if we consider simple functions with the form s =
∑j

i=1 f (ti) χAi , where ti ∈ Ai for
every index i. Thus we have 〈s, µ〉 =

∑j
i=1 f (ti) µ (Ai) =

〈
f,

∑j
i=1 µ (Ai) δti

〉
. Finally, we

extend this conclusion to every basis function ψi.

2.2.2 Theorem

When the domain Ω is compact, so are the convex hulls co (T (Ω)) and co (T (G)) .

Proof
Convex hulls of compact sets are compact.

2.2.3 Theorem

The convex hull co (T (Ω)) and the set V of moment vectors are not necessarily closed.
Proof

By taking Ω = R, ψ1 (t) = t and ψ2 (t) = e−t2 , we found that co (T (Ω)) fails to be closed.
In order to verify that V does not need to be closed, we will exhibit an example suggested
by Pedregal in [11]. Take the probability measure µ = λδt1 + (1− λ) δt2 where

t1 = −
(

1− λ

λ

) 1
4

, t2 =
(

λ

1− λ

) 1
4

, 0 < λ < 1. (15)

Notice that
∫ (

1, t, t2, t3, t4
)
dµ → (1, 0, 0, 0, 1) when λ → 1, which means that the five

algebraic moments of µ converge to the vector (1, 0, 0, 0, 1) when λ → 1. However, it is easy
to see that there is no positive measure on the real line with values (1, 0, 0, 0, 1) as its five
first algebraic moments.

2.2.4 Theorem

Let Qk+1 (Ω) be the set of all probability measures in Ω supported in k + 1 points at most,
then co (T (Ω)) = {〈T, µ〉 , µ ∈ Qk+1 (Ω)} when T is a one to one application.

Proof
Apply Caratheodory´s theorem from Convex Analysis.

2.2.5 Theorem

Let µε ∈ Q (Ω) for every ε > 0 and let y = limε→0 〈T, µε〉 . If y does not belong to co (T (Ω)) ,
then there exists an unbounded subsequence {tεn} ⊂ Ω such that every tεn belongs to
the support of the measure µεn .

Proof
From Theorem 2.2.4, we can express every moment vector xε = 〈T, µε〉 by using a convex
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combination with at most k + 1 terms:

xε = λε
1T (tε1) + · · ·+ λε

k+1T
(
tεk+1

)
(16)

where points tε1, . . . , t
ε
k+1 form the support of the measure µε. If every family {tεi : ε > 0} is

bounded, then there exists a converging sub sequence xεn such that

y = lim
n→∞xεn = λ1T (t1) + · · ·+ λk+1T (tk+1) = 〈T, µ〉 , (17)

where limn→∞ λεn
i = λi, limn→∞ tεn

i = ti, for every i = 1, . . . , k + 1. Thus, the entries of
the vector y ∈ Rk are the moments of the finitely supported measure µ =

∑k+1
i=1 λiδti

and
this result contradicts the assumptions about y.

Although Theorem 2.2.2 states that the moment vector set V is closed in the particular
cases where the feasible set Ω is bounded, Theorem 2.2.3 claims that convex set V does not
need to be closed in general, so we should replace program (12) by the extended program

min
x∈V

c · x . (18)

It is remarkable that any solution for this program is linked with a minimizing sequence
of the function f. Let us assume that x∗ is a solution to the extended program (18) , and
x∗ ∈ co (T (Ω)) , then x∗ = 〈T, µ∗〉 being µ∗ a finitely supported measure in G. In this way,
we can obtain a finite set of global minima of the function f by analyzing the support of
µ∗. In the opposite case when x∗ /∈ co (T (Ω)) , we can obtain a minimizing sequence for f
by using a family of finitely supported measures µε whose moments xε = 〈T, µε〉 approach
x∗ in Rk.

2.2.6 Theorem

If x∗ is a solution to the extended program (18) in co (T (Ω)) , then x∗ ∈ co (T (G)) .
Proof

Since c · x∗ = m (≡ infΩ f) for x∗ = 〈T, µ∗〉 with µ∗ ∈ Q (Ω) , we have 〈f, µ∗〉 = m. From
Theorem 2.1.2, the support of measure µ∗ consists of finitely many points in G.

2.2.7 Theorem

Let {xε = 〈T, µε〉 : ε > 0} be a family of moments in co (T (Ω)) such that xε → x∗, where
x∗ is a solution to the extended program (18) . Then, there exists a minimizing sequence
{tεn} ⊂ Ω for the function f, such that every term tεn belongs to the support of the measure
µεn .

Proof
From Theorem 2.2.4, we can write every moment vector xε by using the convex combination

xε = 〈T, µε〉 = λε
1T (tε1) + · · ·+ λε

k+1T
(
tεk+1

)
(19)

where every measure µε ∈ Qk+1 (Ω) . Since x∗ is a solution for program (18) , then

c · xε = 〈f, µε〉 = λε
1f (tε1) + · · ·+ λε

k+1f
(
tεk+1

) → m

(
≡ inf

Ω
f

)
. (20)

Let us assume that the family {tεi : ε > 0, i = 1, . . . , k + 1} does not contain any minimizing
sequences of the function f. Then f (tεi ) > m + γ with γ > 0, which prevents 〈f, µε〉 from
converging to m.
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2.3 Global Optimization

The success of the theory of the Method of Moments relies on the important fact that it
provides an alternative characterization of the global minima of the function f.

2.3.1 Theorem

Let us assume that f does not have any unbounded minimizing sequence. If x∗ ∈ Rk is a
solution for the extended program (18) , then there exist finitely many points t1, . . . , tρ ∈ G
and positive values λ1, . . . , λρ such that

x∗ = λ1T (t1) + · · ·+ λρT (tρ) and 1 = λ1 + · · ·+ λρ (21)

where ρ may be chosen to be less than k + 2.
Proof

Since f has no unbounded minimizing sequence, Theorem 2.2.7 implies that x∗ ∈ co (T (Ω)) .
Hence, x∗ = 〈T, µ∗〉 where µ∗ is finitely supported. From Theorem 2.1.2, we can verify that
every point in the support of µ∗ is a global minimum of the objective function f. Thus we
also have that µ∗ ∈ P (G) because 〈f, µ∗〉 = c · x∗ = m (≡ infΩ f) . Finally, from Theorem
2.2.4 we have x∗ = 〈T, µ〉 where µ is supported in k + 1 points at the most. And applying
Theorem 2.1.2 again, we conclude that µ is supported in G.

2.3.2 Corollary

If finitely many points t1, . . . , tρ ∈ Ω satisfy (21) , then every ti is a global minimum of f in
Ω.

Proof
By taking the measure µ∗ =

∑ρ
i=1 λiδti we found that 〈f, µ∗〉 = c ·x∗ = m, then the support

of µ∗ is contained in G because of Theorem 2.1.2.

2.3.3 Theorem

Let us assume that f does not have any unbounded minimizing sequence. If x∗ ∈ Rk is
an extreme point of the solution set of the convex program (18) , then there exists a global
minimum t ∈ Ω, of the objective function f, satisfying the set of k non linear equations

x∗ = T (t) . (22)

Proof
If ρ > 1 in (21) , then x∗ could not be an extreme point of the solution set of program (18) .

2.3.4 Corollary

Every point t ∈ Ω satisfying the set of k non linear equations (22) is a global minimum of
the objective function f .

Proof
Take µ∗ = δt and observe that f (t) = 〈f, µ∗〉 = m, then t ∈ G because t is the support of
µ∗ and Theorem 2.1.2.
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2.3.5 Theorem

For arbitrary points t1, . . . , tρ ∈ G and positive values λ1, . . . , λρ satisfying λ1+ · · ·+λρ = 1,
the point x∗ ∈ Rk defined by

x∗ = λ1T (t1) + · · ·+ λρT (tρ) (23)

is a solution of the extended program (18) .
Proof

Take c · x∗ = λ1f (t1) + · · ·+ λρf (tρ) = m (≡ infΩ f) .
From these results we conclude that a necessary and sufficient condition for a finite

number of points t1, . . . , tρ ∈ Ω be a set of global minima of f , is that they satisfy the k
non linear equations

x∗ = λ1T (t1) + · · ·+ λρT (tρ) (24)

for some positive λ1, . . . , λρ with λ1 + · · ·+ λρ = 1, where x∗ ∈ Rk is a moment vector that
solves the extended program (18) . In order to estimate a particular set of global minima
of the function f, we must solve equations (24) for a particular solution of the program
(18) . However, this question is equivalent to looking for a finitely supported measure µ∗

whose moments (with respect to the basis ψ1, . . . , ψk) are the optimal values x∗1, . . . , x∗k.
Notice that we are mostly interested in finding the support of µ∗ rather than determining
the measure µ∗. The answer to this question comes again from the Problem of Moments
where it is clarified how to recover a measure from its moments. Then, in order to apply
the Method of Moments on specific problems, we need a proper characterization of the
closure of the set V of all moment vectors and a practical method for recovering every
finitely supported measure from its moments. The reader can find a recent survey on one
dimensional truncated moment problems in [4].

3 One Dimensional Moment Problems

The Problem of Moments consists in determining the conditions which guarantee that values
x1, . . . , xk are the moments of an arbitrary positive measure µ with respect to a particu-
lar basis of functions ψ1, . . . , ψk, which is defined in some domain Ω. The solution of the
Problem of Moments also should provide techniques for recovering the measure µ from
the sequence of moments x1, . . . , xk. This is a classical problem in modern mathematics in
which great mathematicians have been involved since the nineteenth century. For a classical
introductory review on the Problem of Moments see [16]. Here we solve several truncated
moment problems using a powerful tool from convex analysis. To attain this task, we will
use the classical duality between the moment cone and the cone of the corresponding posi-
tive functions. This tool is introduced in [6] and can be traced back to the seminal works
of Markov and Tchebychev. The reader should also see [14] for a different perspective on
the links between moment theory and global optimization with linear algebra tools.

3.1 General Theory

Let us define

M =
{

x ∈ Rk : xi =
∫

ψidµ, i = 1, . . . k, µ positive mesure in Ω
}

(25)
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as the set of moment vectors of all positive measures supported in Ω. We can easily see that
M is a convex cone in Rk. We also define P as follows:

P =

{
c ∈ Rk :

k∑

i=1

ciψi (t) ≥ 0,∀t ∈ Ω

}
, (26)

where the vectors c in Rk determine non-negative functions in Ω. It is also easy to check
out that P is a closed convex cone in Rk. The usual way for solving moment problems is to
analyze the cone P, since its dual is exactly the closure of the moment cone M.

3.1.1 Theorem

The dual of the cone P is the closure of the cone M.

Proof
For arbitrary vectors c ∈ P and x ∈ M, we have

c · x =
∫ (

k∑

i=1

ciψi

)
dµ ≥ 0. (27)

Thus, P ⊂ M∗, and M ⊂ P ∗. If there exists a point t0 ∈ Ω such that

k∑

i=1

ciψi (t0) < 0, (28)

then
∑k

i=1 cix
0
i < 0, where x0 is the moment vector of the Dirac measure δt0 . Thus, M∗ ⊂ P,

and P ∗ ⊂ M.

By using the duality statement of Theorem 3.1.1, we can find the answer to many clas-
sical truncated moment problems, provided we can properly characterize the corresponding
family of positive functions P. This procedure has been carried out in [4], [6] and [14].

3.2 Hamburger’s Moment Problem

When the function basis is the algebraic system 1, t, . . . , t2r, and the domain Ω is the real
line, the moment problem is referred to as the Hamburger’s Moment Problem. It is well
known, from elementary algebra, that every positive polynomial

∑2r
i=0 cit

i on the real line
can be expressed as the sum of two squares, that is

2r∑

i=0

cit
i =

(
r∑

i=0

ait
i

)2

+

(
r∑

i=0

bit
i

)2

. (29)

However, it will be useful to express (29) by using quadratic forms, so we claim that every
positive polynomial

∑2r
i=0 cit

i on the real line can be expressed in the following form:

2r∑

i=0

cit
i =

r∑

i=0

r∑

j=0

aiajt
i+j +

r∑

i=0

r∑

j=0

bibjt
i+j . (30)
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For solving the classical Hamburger’s Moment Problem, we only need to apply previous
duality statement and the decomposition (30) for positive polynomials. If values x0, . . . , x2r

are the algebraic moments of a positive measure supported on the real line, then x ∈ P ∗,
and thus

2r∑

i=0

cixi ≥ 0 (31)

for the coefficients c of every positive polynomial
∑2r

i=0 cit
i. In particular, for arbitrary values

a0, . . . , ar we have
r∑

i=0

r∑

j=0

aiajxi+j ≥ 0 (32)

due to
(∑r

i=0 ait
i
)2 ≥ 0. Thus, we conclude that a necessary condition for a vector x ∈ R2k+1

to be a moment vector, is that its components form a positive semidefinite Hankel matrix
H = (xi+j)

r
i,j=0 .

On the other hand, assuming that the entries of a vector x ∈ R2r+1 compose a positive
semidefinite Hankel matrix H = (xi+j)

r
i,j=0 , we can see from expression (30) that

2r∑

i=0

cixi =
r∑

i=0

r∑

j=0

aiajxi+j +
r∑

i=0

r∑

j=0

bibjxi+j ≥ 0 (33)

for the coefficients c of every positive polynomial
∑2r

i=0 cit
i on the real line. Therefore,

x ∈ P ∗ = M and we conclude that x is a moment vector or at least it is a limit point of a
sequence of moment vectors. This procedure may be applied to obtain the characterization
of the moment vectors for other bases and domains.

3.3 Trigonometric Moment Problem

From the Riesz-Fejer Theorem in complex analysis, we know that every positive trigono-
metric polynomial

∑r
i=−r cie

ijt can be expressed as

r∑

i=−r

cie
ijt =

∣∣∣∣∣
r∑

k=0

ake
kjt

∣∣∣∣∣
2

=
r∑

l=0

r∑

k=0

akale
j(k−l)t. (34)

By using the quadratic form (34) and the arguments explained above, we easily solve the
Trigonometric Moment Problem.

The closure of the cone M of all moment vectors of positive measures supported in
the unitary circumference S1, with respect to the trigonometric system e−rjt, . . . , erjt, is
the set of all vectors x ∈ C2r+1 whose entries form a positive semidefinite Toeplitz matrix
T = (xk−l)

r
k,l=0 .

3.4 Stieltjes and Hausdorff’s Moment Problem

The Stieltjes Moment Problem arises when we consider the algebraic system 1, t, . . . , tr on
the semi-axis Ω = [0,∞) of the real line. If we restrict the domain to a bounded interval
Ω = [a, b] , we obtain the Hausdorff’s Moment Problem.
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3.4.1 Solution to the Stieltjes Problem - Even Case

The closure of the cone M of all moment vectors of positive measures supported in the
semiaxis [0,∞), with respect to the algebraic system 1, t . . . , t2r, is the set of all vectors
x ∈ R2r+1 whose entries form two positive semidefinite Hankel matrices given by

H1 = (xi+j)
r
i,j=0 H2 = (xi+j+1)

r−1
i,j=0 . (35)

Proof
Since we can express an arbitrary, even degree, non negative polynomial

∑2r
i=0 cit

i on the
semiaxis [0,∞) in the form

2r∑

i=0

cit
i =

(
r∑

i=0

ait
i

)2

+ t

(
r−1∑

i=0

bit
i

)2

(36)

see [6]. This expression may be rewritten by the following couple of quadratic forms

2r∑

i=0

cit
i =

r∑

i=0

r∑

j=0

aiajt
i+j +

r−1∑

i=0

r−1∑

j=0

bibjt
i+j+1. (37)

Then, we can repeat the arguments used in the proof of Hamburger´s Moment Problem.

3.4.2 Solution to the Stieltjes Problem - Odd Case

The closure of the cone M of all moment vectors of positive measures supported in the
semiaxis [0,∞), with respect to the algebraic system 1, t . . . , t2r+1, is the set of all vectors
x ∈ R2r+2 whose entries form two positive semidefinite Hankel matrices with the following
form

H1 = (xi+j)
r
i,j=0 H2 = (xi+j+1)

r
i,j=0 . (38)

Proof
For odd degree, positive polynomials in [0,∞), we have the analogous expression

2r+1∑

i=0

cit
i =

(
r∑

i=0

ait
i

)2

+ t

(
r∑

i=0

bit
i

)2

(39)

which can be written as the sum of two quadratic forms:

2r+1∑

i=0

cit
i =

r∑

i=0

r∑

j=0

aiajt
i+j +

r∑

i=0

r∑

j=0

bibjt
i+j+1. (40)

3.4.3 Solution to the Hausdorff’s Problem - Even Case

The closure of the cone M of all moment vectors of positive measures supported in the
bounded interval [κ1, κ2] , with respect to the algebraic system 1, t . . . , t2r, is the set of all

12



vectors x ∈ R2r+1 whose entries make positive semidefinite the following symmetric matri-
ces:

H1 = (xi+j)
r
i,j=0 H2 = ((κ1 + κ2) xi+j+1 − κ1κ2xi+j − xi+j+2)

r−1
i,j=0 . (41)

Proof
From Markov-Luckas Theorem [6], we can express every even degree positive polynomial
on the bounded interval Ω = [κ1, κ2] as

2r∑

i=0

cit
i =

(
r∑

i=0

ait
i

)2

+ (t− κ1) (κ2 − t)

(
r−1∑

i=0

bit
i

)2

. (42)

Then we can write this expression by using the following quadratic forms:

r∑

i=0

r∑

j=0

aiajt
i+j +

r−1∑

i=0

r−1∑

j=0

bibj

(
(κ1 + κ2) ti+j+1 − κ1κ2t

i+j − ti+j+2
)

(43)

and repeat the arguments for the Hamburger´s Moment Problems.

3.4.4 Solution to the Hausdorff’s Problem - Odd Case

The closure of the cone M of all moment vectors of positive measures supported in the
bounded interval [κ1, κ2] , with respect to the algebraic system 1, t . . . , t2r+1, is the set of all
vectors x ∈ R2r+2 whose entries form two positive semidefinite symmetric matrices given
by

H1 = (xi+j+1 − κ1xi+j)
r
i,j=0 H2 = (κ2xi+j − xi+j+1)

r
i,j=0 . (44)

Proof
Again, from Markov-Luckas Theorem, we can express every odd degree positive polynomial
on the bounded interval Ω = [κ1, κ2] as

2r+1∑

i=0

cit
i = (t− κ1)

(
r∑

i=0

ait
i

)2

+ (κ2 − t)

(
r∑

i=0

bit
i

)2

. (45)

Hence we have the quadratic form expression

r∑

i=0

r∑

j=0

aiaj

(
ti+j+1 − κ1t

i+j
)

+
r∑

i=0

r∑

j=0

bibj

(
κ2t

i+j − ti+j+1
)

. (46)

At this stage we should note the important fact that every one dimensional moment
problem was solved by using a particular set of quadratic forms coming from the classical
characterizations of positive polynomials in intervals.

3.5 Measure Recovery

The second question behind a particular moment problem is about the construction of a
measure µ from a set of values x1, . . . , xk which are supposed to be the moments of µ. Once
again, this is a very difficult problem in modern mathematics. However, for one dimensional
algebraic and trigonometric moment problems we have the right answer. In Section 5 of [10]
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the reader can find the proper methods for obtaining a finitely supported measure µ from a
finite sequence of one dimensional moments. These methods come from the characterization
of one dimensional truncated moments provided by Curto and Fialkow in [4].

These results are briefly recalled in the following. If we take the values x0, . . . , x2r as
the algebraic moments of a positive measure µ supported on the real line, its supporting
points can be estimated by finding the roots of the polynomial

P (t) =

∣∣∣∣∣∣∣∣∣

x0 x1 · · · xj

· · ·
xj−1 xj · · · x2j−1

1 t · · · t2j

∣∣∣∣∣∣∣∣∣
(47)

where j is linked with the rank of the Hankel matrix H = (xi+j)
r
i,j=0 . See [10] for a similar

result applying on truncated trigonometric moments problem. Observe here that we only
need to know the supporting points of µ to determine the global minima of f by the Method
of Moments.

3.6 One Dimensional Polynomial Programs

The solutions presented here to one dimensional moment problems allow us to apply the the-
ory of the Method of Moments for solving mathematical programs involving one-dimensional
polynomials. Since we have characterized the one dimensional algebraic moments of pos-
itive measures on the line, and because we have a practical method to estimate its sup-
porting points from its moment sequence, then we can fruitfully apply the general theory
of the Method of Moments for analyzing arbitrary, non convex, one dimensional polyno-
mial programs. A detailed exposition of the application of the Method of Moments to one
dimensional polynomial programs may be found in [10].

For instance, to estimate the global minima of a particular one-dimensional polynomial
given by

f (t) =
2r∑

i=0

cit
i (48)

we should solve the corresponding semidefinite program:

min
x

2r∑

i=0

cixi s.t. (xi+j)
r
i,j=0 ≥ 0 and x0 = 1 . (49)

As the polynomial f has no unbounded minimizing sequence, we conclude that every so-
lution of the convex program (49) provides a set of global minima of the polynomial f in
R.

3.6.1 Theorem

For every solution x∗ ∈ R2r+1 of the semidefinite program (49) , there exist finitely many
points t1, . . . , tρ ∈ G and positive values λ1, . . . , λρ satisfying the equations

x∗j = λ1t
j
1 + · · ·+ λρt

j
ρ, j = 0, . . . , 2r (50)
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where G is the set of all global minima of the polynomial f given in (48) . Here ρ may be
chosen to be less than 2r + 3.

Proof
Apply Theorem 2.3.1 and the solution of the Hamburger´s Moment Problem.

3.6.2 Theorem

A necessary and sufficient condition for finitely many points

t1, . . . , tρ ∈ R (51)

to be global minima of the polynomial f given in (48) , is that the following 2r+1 equations

x∗j = λ1t
j
1 + · · ·+ λρt

j
ρ, j = 0, . . . , 2r (52)

hold true for some solution x∗ ∈ R2r+1 of the semidefinite program (49) and positive values
λ1, . . . , λρ.

Proof
Apply Theorem 2.3.1, Corollary 2.3.2 and the solution of the Hamburger´s Moment Prob-
lem.

3.6.3 Corollary

If x∗ is an extreme point of the solution set of program (49) , then x∗1 is a global minimum
in R of the polynomial f given by the expression (48) .

Proof
Apply Theorem 2.3.3 and the solution of the Hamburger’s Moment Problem.

Since we have obtained an explicit method for determining a finitely supported mea-
sure from a sequence of its algebraic moments, we can find the global minima of any one
dimensional algebraic polynomial with the form (48) . Let us assume that x∗ ∈ R2r+1 is a
solution of the semidefinite program (49) , then the roots of the polynomial

P ∗ (t) =

∣∣∣∣∣∣∣∣∣

x∗0 x∗1 · · · x∗j
· · ·

x∗j−1 x∗j · · · x∗2j−1

1 t · · · t2j

∣∣∣∣∣∣∣∣∣
(53)

are global minima of the polynomial f in (48) . See the proof of this fundamental result in
[10].

Each one of the classical one dimensional moment problems allows us to solve a general
family of non convex one dimensional polynomial programs. The following results illustrate
this statement.

3.6.4 Theorem

A necessary and sufficient condition for finitely many points

z1, . . . , zρ ∈ S1 ≡ {z ∈ C : |z| = 1} (54)
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to be global minima of the trigonometric polynomial

f (z) =
r∑

i=−r

ciz
i (55)

is that the equations
x∗j = λ1z

j
1 + · · ·+ λρz

j
ρ, j = −r, . . . , r (56)

hold true for some solution x∗ ∈ C2r+1 of the semidefinite program

min
x

r∑

i=−r

cixi s.t. (xk−l)
r
k,l=0 ≥ 0 and x0 = 1 (57)

and positive values λ1, . . . , λρ.

Proof
Apply Theorem 2.3.1, Corollary 2.3.2 and the solution of the Trigonometric Moment Prob-
lem.

The procedure for recovering a finitely supported measure from its trigonometric mo-
ments is explained in [10].

We can settle similar results for global optimization of one dimensional polynomial
programs defined in arbitrary intervals of the real line. By using the even cases of Stieltjes
and Hausdorff’s Moment Problems we obtain the following theorems. The reader can infer
the analogous results for odd cases.

3.6.5 Theorem

A necessary and sufficient condition for points t1, . . . , tρ ≥ 0 to be global minima of the
even degree, algebraic polynomial f given by (48) , is that the equations

x∗j = λ1t
j
1 + · · ·+ λρt

j
ρ, j = 0 , . . . , 2r (58)

hold true for some solution x∗ ∈ R2r+1 of the semidefinite program:

min
x

2r∑

i=0

cixi s.t. (xk+l)
r
k,l=0 ≥ 0, (xk+l+1)

r−1
k,l=0 ≥ 0 and x0 = 1 (59)

and positive values λ1, . . . , λρ.

Proof
Apply Theorem 2.3.1, Corollary 2.3.2 and the solution for the even case of the Stieltjes
Moment Problem.

3.6.6 Theorem

A necessary and sufficient condition for points t1, . . . , tρ to be global minima in the interval
[κ1, κ2] of the even degree, algebraic polynomial f given by (48) , is that the equations

x∗j = λ1t
j
1 + · · ·+ λρt

j
ρ, j = 0 , . . . , 2r (60)
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hold true for some solution x∗ ∈ R2r+1 of the semidefinite program:

min
x

2r∑

i=0

cixi s.t. (xk+l)
r
k,l=0 ≥ 0 (61)

((κ1 + κ2) xk+l+1 − κ1κ2 xk+l − xk+l+2 )r−1
k,l=0 ≥ 0 and x0 = 1 (62)

and positive values λ1, . . . , λρ.
Proof

Apply Corollary 2.3.2, Theorem 3.1.1 and the solution of the even case of the Hausdorff’s
Moment problem.

In this section, we have applied the Method of Moments for transforming a one di-
mensional polynomial program into an equivalent semidefinite program. The key in this
procedure is to find a convenient positive semidefinite quadratic form which characterizes
the algebraic moments of positive measures on intervals. See [1] for a review on semidefinite
programming.

3.7 Example

Let us illustrate the theory introduced by treating the next polynomial program

min
t∈R

0.2 t4 − t3 + t2 + t (63)

which is described by a non convex curve with only one global minima. Its semidefinite
relaxation takes the form:

min 0.2m4 −m3 + m2 + m1

s.t.


1 m1 m2

m1 m2 m3

m2 m3 m4


 ≥ 0

(64)

and it can be easily formulated as a semidefinite program. By using available routines for
semidefinite programming described in [5], we obtain the following answer:

m∗
1 = −0.3263

m∗
2 = 0.1065

m∗
3 = −0.0348

m∗
4 = 0.0113

(65)

and we conclude that the non convex polynomial in (63) has a global minima at point
t∗ = −0.3263.

4 Concluding Remarks

In this paper we provide a general characterization of global minima of arbitrary programs as
has been stated in Section 2. Thus, we have seen how to treat one dimensional non convex
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polynomial programs by reducing them to a single semidefinite program which encloses
the information about the optimal solutions of the original problem. We have actually
attained this task by focussing on the particular quadratic form that solves the truncated
moment problem in a given real interval. We also stress that several global minima of one
dimensional polynomial programs can be estimated by using algebraic tools proposed by
Curto and Fialkow in [4] . These methods have been carefully explained in [10]. For the
analysis of higher dimension polynomial programs under constraints the reader should refer
to [7], [8] and [9].
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