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rmeziat@uniandes.edu.co, d-patino@uniandes.edu.co

March, 2005

Abstract

We solve non-convex, variational problems in the form

min
u

I(u) =

∫ 1

0

f(u′(x))dx s.t. u(0) = 0, u(1) = a, (1)

where u ∈ (W 1,∞(0, 1))k and f : Rk → R is a non-convex, coercive
polynomial. To solve (1) we analise the convex envelope fc at the point a,
this means to find vectors a1, . . . , aN ∈ Rk and positive values λ1, . . . , λN

satisfying the non-linear equation

(1, a, fc(a)) =

N∑
i=1

λi(1, ai, f(ai)). (2)

With this information we calculate minimizers of (1) by following a pro-
posal of B. Dacorogna in [15]. We represent the solution of (2) as the
minimizer of one particular convex, optimization problem defined in prob-
ability measures which can be transformed into a semidefinite program by
using necessary conditions for the solution of the multidimensional mo-
ments problem. To find explicit solutions of (1), we use a constructive, a
posteriori approach which exploits the characterization of one dimensional
moments on the marginal moments of a bivariate distribution. By follow-
ing J.B. Lasserre’s proposal on global optimization of polynomials [25], we
determine conditions on f and a to obtain exact semidefinite relaxations
of (1).

Keywords: calculus of variations, convex analysis, semidefinite pro-
gramming, multidimensional moments problem.
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1 Introduction

Non-convex variational problems arise in several subjects of mathematical physics
like non-linear elasticity, fluid mechanics and electromagnetism. See [2, 7, 8, 10,
11, 15, 36, 41] for different applications of non-convex variational problems in
solid mechanics. However, the direct methods of functional analysis do not
provide any satisfactory answer for them as it is not easy to prove weak infe-
rior semicontinuity on their functionals. Therefore, we must apply specialized
techniques from non-linear analysis, usually taken from convex analysis. See
[9, 15, 18, 35, 40, 44, 52]. In this paper we solve a family of non-convex vari-
ational problems by using convex relaxations in moments. This technique has
been successful in global optimization of polynomials [20, 23, 24, 25, 26, 27,
29, 31, 32, 37, 38, 47], moreover it has been recently applied to the analysis of
non-convex, variational problems and non-linear, optimal control problems. See
[16, 30, 33, 35, 39, 42].

Let f : Rk → R be a coercive polynomial, this means that

f(x) > α ‖x‖γ + β ∀x ∈ Rk

where γ > 1, α > 0 and β are constants. We notice that co (Epi(f)) is closed,
therefore

co (Epi(f)) = Epi (fc)

where co stands for convex hull of sets in the Euclidean space Rk+1, Epi stands
for epigraph and fc represents the convex envelope of the function f . We notice
that every point (a, fc(a)) on the graph of fc can be expressed as a convex
combination of points on the graph of the function f , that is

(1, a, fc(a)) =
N∑

i=1

λi

(
1, ai, f

(
ai

))
(3)

where λi > 0 for every i = 1, . . . , N and N ≤ k +1. See [43] for an introduction
to convex envelopes of functions. In this work we solve the non-linear equation
(3) called analysis of the convex envelope of the polynomial f at the point a.
The solution of this problem is not always unique, nevertheless we will neglect
those cases with several solutions. On the other hand, B. Dacorogna has shown
that the points a1, . . . , aN and the values λ1, . . . , λN in (3) solve the following
non-convex variational problem:

min
u

∫ 1

0

f(u′(t))dt s.t. u(0) = 0 u(1) = a (4)

where the admissible functions u belong to the Sobolev space (W 1,∞(0, 1))k. In-
deed, Formula (8) defines a minimizer for (4), see Theorem 2.6 in [[15],Chapter
5]. We represent the solution of (3) as a relaxation of (4) defined in prob-
ability measures. Probability becomes an important relaxation tool in opti-
mization theory. It represents convex envelopes in mathematical programming,
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mixed strategies in game theory, generalized curves in optimal control and
parametrized measures in calculus of variations. See [17, 22, 23, 24, 25, 27,
29, 32, 37, 40, 44, 50, 52] and references therein. From Jensen’s inequality, we
observe that the convex envelope of the polynomial f at the point a admits the
following definition as a new optimization problem in measures:

fc(a) = min
µ

∫
Rk

f(s) dµ(s) (5)

where µ represents the family of all probability distributions supported in Rk

satisfying

a =
∫

Rk

s dµ(s). (6)

The discrete probability distribution:

µ∗ =
N∑

i=1

λiδai (7)

solves this optimization problem in measures. Notice that f
(
ai

)
= g

(
ai

)
for

every i = 1, . . . , N , where g(x) = fc(a) + (x− a) · y and y is a subgradient of fc

at the point a, i.e. y ∈ ∂fc(a).

Proposition 1 Let f be a coercive, continuous function. A probability measure
µ satisfying (6) is a solution of (5), if and only if it is supported in a set with
the form Ag =

{
x ∈ Rk : g(x) = f(x)

}
.

In short, every way in which we can express the point a as a convex combina-
tion of points in Ag provides a different way for solving the non linear equation
(3). On the other hand, every set of points a1, . . . , aN and values λ1, . . . , λN

satisfying the expression (3) determines an optimal discrete probability like (7).
Since equation (3) admits only one solution, (7) is the unique solution of (5).

Proposition 2 The optimization problem defined in probability measures (5)
is an exact relaxation of the non-convex variational problem (4) provided that f
be a coercive polynomial. The probability measure in (7) is its unique solution.
The supporting points and probabilities of (7) solve the equation (3) and define
a set of N! minimizers for (4) when they are replaced in the expression:

u∗(t) =



a1t if 0 ≤ t ≤ λ1

a1λ1 + a2 (t− λ1) if λ1 ≤ t ≤ λ1 + λ2

...
a1λ1 + · · ·+ aN−1λN−1 + aN (t− λ1 − · · · − λN−1)
if λ1 + · · ·+ λN−1 ≤ t ≤ 1.

(8)

By using necessary conditions for the multidimensional moments problem
we obtain semidefinite relaxations of (5) which can be solved by interior point
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algorithms. For recent results on the multidimensional moments problem see
[5, 6, 13, 14, 25, 28, 45, 49]. Also see [4, 48, 51] for a good introduction to
semidefinite programming and interior point methods. The approach outlined
here has been also applied to obtain semidefinite relaxations of polynomial pro-
grams, see [20, 24, 25, 26, 27, 29, 31, 32, 38]. To solve the optimization problem
(5), we use an a posteriori constructive approach based on the moments of
marginal distributions of bivariate probability distributions. Thus, we can cal-
culate minimizers for (4) from an exact semidefinite relaxation. By applying
Lasserre’s scheme of duality in semidefinite relaxations of polynomial programs
in [25], we obtain a general a priori condition for obtaining exact semidefinite
relaxations: the non-negative polynomial f − g must be a finite sum of squares
of polynomials.

The present paper is organized as follows. In Section 2 we analyze the convex
envelopes of one dimensional polynomials. In Section 3, we will see the analysis
of convex envelopes of two-dimensional polynomials. In Section 4 we solve
particular examples of non-convex variational problems (4). Finally, in Section
5 we give some conclusions and comments about this paper and further research
on non-convex, variational problems with moments and convex optimization in
non linear elasticity.

2 Analysis of the one-dimensional situation

We deal here with the analysis of the convex envelope of one-dimensional coer-
cive polynomials given in the general form:

f(t) =
2n∑
i=0

cit
i with c2n > 0. (9)

Let us consider the convex envelope of f at the point a, which can be expressed
as:

fc(a) = min
µ

∫
R

f(s) dµ(s) (10)

where µ represents the family of probability measures in R satisfying:∫
R

s dµ(s) = a. (11)

The optimal measure of (10) may have two possible forms: the first one is as a
two-points supported measure

i) µ∗ = λ1δa1 + λ2δa2 (12)

therefore
(1, a, fc(a)) = λ1 (1, a1, f (a1)) + λ2 (1, a2, f (a2)) . (13)

This situation appears where: fc(a) < f(a). The second possible form of the
optimal measure µ∗ is as a Dirac measure

ii) µ∗ = δa (14)
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which is found where: fc(a) = f(a). This observation comes out from a simple
application of Carathedory’s theorem. By using the classical solution of the
truncated Hamburger moment problem [12, 21, 23], we transform the problem
(10) into the semidefinite program:

min
m

2n∑
i=0

cimi s.t. H ≥ 0, m0 = 1, m1 = a (15)

where H = (mi+j)n
i,j=0.

Theorem 3 Let f be a one-dimensional, coercive polynomial with the form
given in (9), then the solution m∗ of the corresponding semidefinite program
(15) contains the algebraic moments of the optimal measure µ∗ solving (10).

Proof. Since m∗ is an optimal point of a linear objective function defined
in a convex feasible set, it must be part of the boundary of such feasible set.
Then, m∗ does not define a positive definite Hankel matrix H∗ =

(
m∗

i+j

)n

i,j=0
.

Instead, H∗ is forced to be a positive semidefinite Hankel matrix. We recall from
the theory of semidefinite Hankel matrices [21] that there exists an integer k
satisfying 0 ≤ k ≤ n such that Dρ > 0 for ρ = 0, . . . , k− 1 and Dρ = 0 for every

ρ = k, . . . , n. Here Dρ = det
[(

m∗
i+j

)ρ

i,j=0

]
is the principal subdeterminant of

H∗ defined by taking the first ρ rows and the first ρ columns of H∗. (k is
the rank of H∗ according to the definition given in [12]). By applying Fisher’s
theorem [46], we can see that there exists a unique discrete probability measure
supported in k points:

µ∗ =
k∑

i=1

λiδai

whose first 2n moments are the values m∗
0, . . . ,m

∗
2n−1 respectively, and its (2n+

1)-th moment does not exceed the value m∗
2n. Therefore∫

R
f(s) dµ∗(s) ≤

2n∑
i=0

cim
∗
i ≤

∫
R

f(s) dµ(s) (16)

for every probability measure µ in R satisfying (11). The left side inequality in
(16) comes out from the positivity of the leader coefficient c2n of the polynomial
f . The right side inequality in (16) comes out from the fact that the moments
of every positive measure form a positive semidefinite Hankel matrix.

Now, we apply this result to the analysis of one-dimensional, non-convex,
variational problems (4) and we will see that we can obtain minimizers for (4)
from their convex relaxations (15).

Corollary 4 The Hankel matrix H∗ =
(
m∗

i+j

)n

i,j=0
constructed by using the

optimal values of the program (15) only has rank one or two. Moreover, its
rank is determined by the convexity of f at the point a.
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If H∗ = (m∗
i+j)

n
i,j=0 has rank one, its entries are the algebraic moments of

the Dirac measure µ∗ = δa. We can determine µ∗ = δa by taking m∗
1 = a as its

supporting point. Otherwise H∗ has rank two. In this case we can obtain the
optimal measure µ by solving the second degree algebraic equation:

P (t) =

∣∣∣∣∣∣
m∗

0 m∗
1 m∗

2

m∗
1 m∗

2 m∗
3

1 t t2

∣∣∣∣∣∣ = 0 (17)

which has two real roots a1, a2, where a1 < a < a2. See [1]. By taking:

λ1 =
a2 − a

a2 − a1
and λ2 =

a− a1

a2 − a1
(18)

we obtain:
µ∗ = λ1δa1 + λ2δa2 .

Summarizing, by solving the convex program (15) we obtain the optimal mea-
sure µ∗ of (10). In addition, the support and the probabilities of µ∗ determine
the analysis of the convex envelope of the polynomial (10) at the point a. Thus,
in one dimensional cases, the semidefinite program (15) is always an exact re-
laxation of the corresponding variational problem (4).

Remark 5 In order to calculate a three-points supported measure on the real
line from its moments, we must increase the determinant in (17), so we obtain a
third degree algebraic equation with three real roots. This procedure was proposed
in [1] and it will be useful later for the two-dimensional case.

3 Analysis of two-dimensional polynomials

To analyse convex envelopes of two-dimensional, coercive polynomials

f (x, y) =
∑

0≤i+j≤2n

ci,jx
iyj (19)

in one particular point a = (a1, a2) on the plane, we must use a different
approach. The reason relies on the fact that we can not properly charac-
terize the cone of two indexed vectors (mi,j : 0 ≤ i + j ≤ 2n) of moments of
bivariate positive measures by using a single linear matrix inequality. See
[5, 6, 13, 14, 28, 45, 49] for recent accounts on the characterization of mul-
tidimensional moments and [24, 25, 26, 27, 29] for their implications in global
optimization of polynomials. A necessary condition for (mi,j : 0 ≤ i + j ≤ 2n) to
be a vector of moments, is that its entries form a semidefinite positive quadratic
form like (mi+i′,j+j′)0≤i+j≤n, 0≤i′+j′≤n. Thus, we have the following result.

Proposition 6 Every semidefinite program:

min
m

∑
0≤i+j≤2n

ci,jmi,j

s.t. (mi+i′,j+j′)0≤i+j≤n′, 0≤i′+j′≤n′ ≥ 0

with m0,0 = 1; m1,0 = a1; m0,1 = a2; n′ ≥ n

(20)

6



is a lower bound for the problem (5) with k = 2. Hence, (20) is a lower bound
of the non-convex variational problem (4).

Now we establish sufficient, a posteriori conditions to make (20) an exact
relaxation of (4) in the two dimensional case, i.e. k = 2.

Proposition 7 When the values {m∗
i,j : 0 ≤ i + j ≤ 2n′} solve (20) and they

are the moments of a bivariate probability distribution, then the semidefinite
program (20) is an exact relaxation of the corresponding variational problem
(4) and the values m∗

i,j must be the moments of the probability measure µ∗ that
solves (5).

Thus, to obtain exact relaxations of (4) we must solve the semidefinite pro-
gram (20) and verify if we obtain a valid set of moments m∗

i,j . If we can achieve
this aim, we obtain the moments of the probability measure µ∗ that solves the
non-linear equation (3). We propose a particular method to do this. It con-
sists in trying the construction of a measure µ∗ from the values m∗

i,j . Since the
optimal measure (7) that we search for is supported in three points at most,
we calculate first the marginal distributions µ∗X and µ∗Y by applying the pro-
cedure for one dimensional problems on the marginal values m∗

i,0 and m∗
0,j . In

general, it is not possible to recover a bivariate probability distribution from
its marginal distributions. Nevertheless, we can obtain µ∗ from its marginal
distributions owed to its extremely simple form. Next, as µ∗ was obtained by
using only the marginal values m∗

i,0,m
∗
0,j , we must check that all the bivariate

moments of the constructed distribution µ∗ coincide with their corresponding
values m∗

i,j obtained in (20). When this verification procedure is right, the con-
structed measure µ∗ must have the form (7). Hereafter, we can use its support
and its probabilities to determine a set of minimizers of the variational prob-
lem (4). If this procedure works well, we can conclude that (20) is an exact
relaxation of (4). Now we establish a priori conditions to obtain exact semidef-
inite relaxations of (4). We present an analysis based on the dual program of
the semidefinite relaxation (20) following the same approach proposed by J.B.
Lasserre in [25] for global optimization of polynomials. We also need a sup-
porting, linear function g(x) = fc(a) + (x − a) · y with y ∈ ∂fc(a). Notice that
g(a) = fc(a) and g ≤ f .

Theorem 8 If there exists a y ∈ ∂fc(a) such that the positive polynomial f − g
can be expressed as a sum of squares of polynomials whose degrees do not exceed
n′, then we can guarantee that (20) is an exact relaxation of (4).

Proof. To prove the strict feasibility of the semidefinite program (20), we
take the moments of any probability distribution with continuous density in R2

whose marginal first order moments are the values a1 and a2. See [4, 14, 25, 29,
48]. The dual form of the semidefinite program (20) is

max−γ0,0 − 2a1γ1,0 − 2a2γ0,1 s.t.

〈Ai,j ,Γ〉 = ci,j for 0 ≤ i + j ≤ 2n′ and Γ ≥ 0
(21)
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where Γ = (γi+i′,j+j′)0≤i+j≤n′, 0≤i′+j′≤n′ , 〈·〉 stands for the Frobenius product
and every matrix Ai,j is full of zeros, but its i-j entries where there are ones.
The i-j entries are the positions of the function xiyj in the quadratic form ZZt

with Z = (xiyj)0≤i+j≤n′ . See [37, 25]. Without lost of generality we can assume
that f does not have linear nor constant terms, so if f − g =

∑l
j=0 q2

j we can

take Γ =
∑l

j=0 qjq
t
j where qj(x, y) = qj · Z. Finally, notice that Γ is a factible

point for the dual program (21) whose value in the objective function is fc(a).

If the problem does not fulfill the condition of this theorem, we still can fit
the problem into a compact set and use recent proposals on the characterization
of multidimensional moments of measures on compact semi-algebraic sets. This
would entail one additional linear matrix inequality constraint in the semidefi-
nite program (20). In this case, we can use the fact that positive polynomials
like f − g can be approximated by a sequence of sums of squares of polynomials
on particular compact sets. This fact guarantees that we can obtain an increas-
ing sequence of lower bounds of (4) which should converge to the optimal value
of (4). See [25].

4 Examples

In this section we calculate minimizers of non-convex, variational problems like
(4). We used the routines described in [19] to solve every semidefinite program.

4.1 One-dimensional, non-convex variational problems

We solve (4) with k = 1, the non-convex, eight degree polynomial integrand:

f(t) = t8 − t7 − 3t6 + 2.2t5 + 3t4 − t3 − t2 − 0.1t + 1.4

and the boundary condition a = −0.5. The optimum measure is

µ∗ = 0.6445δ−1.0840 + 0.3555δ0.5589. (22)

Thus, there are two minimizers in W 1,∞(0, 1), one of them is:

u∗(x) =

{
−1.084x 0 ≤ x ≤ 0.6445
0.5589(x− 0.6445)− 0.6986 0.6445 < x ≤ 1.

Figure 1(a) shows the convex envelope of f and Figure 1(b) shows the minimizers
of (4). By taking the boundary condition a = 1, we obtain the optimal measure:

µ∗ = 0.5209δ0.6638 + 0.4791δ1.3655 (23)

and the couple of minimizers shown in Figure 2. The explicit expression for one
of them is:

u∗(x) =

{
0.6638x 0 ≤ x ≤ 0.5209
1.3655(x− 0.5209) + 0.3458 0.5209 < x ≤ 1.
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For a = 1.5 there is only one minimizer: u∗(x) = 1.5x because the optimal
measure of (5) is the Dirac measure δ1.5.

(a) One dimensional non convex
polynomial and its convex envelope

(b) Minimizers u∗ when a = −0.5

Figure 1: Solution of a one dimensional non convex variational problem

Figure 2: Minimizers u∗ when a = 1

4.2 Two-dimensional, non-convex variational problems

Now we will see the particular features of the method when it is applied on
two-dimensional cases.

4.2.1 2D Example

To analyse the convex envelope of the eight degree polynomial

f(x, y) = (x2+y2+1)((x−1)2+(y−1)2)((x−2)2+(y+1)2)((x−1)2+(y+1)2+1)
(24)

at the point a = (1.9,−0.8), we solve the corresponding semidefinite program
(20) with n′ = 4. We use the values m∗

i,0, m∗
0,j to construct the marginal
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measures

µ∗X = 0.1δ1 + 0.9δ2

µ∗Y = 0.1δ1 + 0.9δ−1

which provide the optimal bivariate probability measure

µ∗ = 0.1δ(1,1) + 0.9δ(2,−1). (25)

Figure 3(a) shows the non-convex surface of the polynomial (24), Figure 3(b)
shows the support of the optimal measure µ∗ given in (25). We must check
that all moments of the measure µ∗ given in (25) coincide with the optimal
values obtained in the program (20). The results of this verification procedure
are shown in Table 1 where m̃i,j =

∫∫
xiyjdµ∗. In this case, we obtain an

exact semidefinite relaxation of (4) with the polynomial (24) and the boundary
condition a = (1.9,−0.8). The minimizers of this problem in (W 1,∞(0, 1))2 are
shown in Figure 4. One of them is:

u∗(x) =

{
(1, 1)x 0 ≤ x ≤ 0.1
(x− 0.1)(2,−1) + (0.1, 0.1) 0.1 < x ≤ 1.

(26)

Moment m̃i,j m∗
i,j |m̃i,j −m∗

i,j | Moment m̃i,j m∗
i,j |m̃i,j −m∗

i,j |
m1,1 -0.17 -0.17 1.6e-009 m3,3 -1.8 -1.8 2.1e-008
m2,1 -0.7 -0.7 1.9e-009 m4,3 -3.9 -3.9 4.7e-008
m3,1 -1.8 -1.8 8.6e-009 m3,4 2.5 2.5 2.7e-008
m1,2 0.9 0.9 5.9e-009 m7,1 -34 -34 1.8e-007
m2,2 1.4 1.4 1e-008 m6,2 17 17 1.4e-007
m1,3 -0.17 -0.17 1.5e-009 m5,3 -8.2 -8.2 9.9e-008
m4,1 -3.9 -3.9 2.2e-008 m4,4 4.6 4.6 5.4e-008
m3,2 2.5 2.5 1.9e-008 m2,4 1.4 1.4 1.4e-008
m2,3 -0.7 -0.7 8.2e-009 m1,5 -0.17 -0.17 2.3e-009
m1,4 0.9 0.9 7.1e-009 m2,5 -0.7 -0.7 1e-008
m5,1 -8.2 -8.2 4.7e-008 m3,5 -1.8 -1.8 2.7e-008
m6,1 -17 -17 9.5e-008 m1,6 0.9 0.9 2.8e-009
m4,2 4.6 4.6 3.7e-008 m2,6 1.4 1.4 7.7e-009
m5,2 8.9 8.9 7.2e-008 m1,7 -0.17 -0.17 4e-009

Table 1: Verification procedure

4.2.2 2D Example

We analyse the polynomial:

f(x, y) = (x2 +y2)((x−1)2 +(y−1)2)((x−2)2 +(y+1)2)((x−1)2 +(y+1)2 +1)
(27)
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(a) Non convex surface (b) Support of the optimal measure

Figure 3: Analysis of a convex envelope

Figure 4: Minimizers u∗ for (1.9,−0.8)

in the point a = (0.9, 0.1). After solving the program (20) with n′ = 4 and the
coefficients of (27), we obtain the following marginal measures

µ∗X = 0.2667δ2 + 0.3667δ1 + 0.3666δ0

µ∗Y = 0.2667δ−1 + 0.3667δ1 + 0.3666δ0

and the optimal bivariate measure:

µ∗ = 0.2667δ(2,−1) + 0.3667δ(1,1) + 0.3666δ(0,0)

shown in Figure 5(b). In this example, the verification procedure of comparing
the moments of µ∗ against the optimal values of the program (20) has been
satisfactory, but it is not shown here. In this case we obtain an exact relaxation
of (4). Figure 6 shows the minimizers in (W 1,∞(1, 0))2. We show the explicit
expression obtained for one of them:

u∗(x) =


(2,−1)x 0 ≤ x ≤ 0.2667
(1, 1)(x− 0.2667) + (0.5334,−0.2667) 0.2667 ≤ x ≤ 0.6334
(0.9001, 0.1) + (0, 0)(x− 0.6334) 0.6334 ≤ x ≤ 1.

(28)
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(a) Non convex surface (b) Support of the optimal measure

Figure 5: Analysis of a convex envelope

4.2.3 2D Example

When we analyse the convex envelope of the eight degree polynomial

f(x, y) = ((x+2)2+y2)((x−1)2+(y−1)2)(x2+(y+1)2)((x−0.1)2+(y+1)2+1)
(29)

at the point a = (−0.2, 0) we obtain the optimal measure

µ∗ = 0.28δ(−2,0) + 0.36δ(0,−1) + 0.36δ(1,1)

shown in Figure7(b). The (W 1,∞(0, 1))2 minimizers are shown in Figure 8. Here
we describe one of them:

u∗(x) =


(−2, 0)x 0 ≤ x ≤ 0.28
(0,−1)(x− 0.28) + (−0.56, 0) 0.28 ≤ x ≤ 0.64
(−0.56,−0.36) + (1, 1)(x− 0.64) 0.64 ≤ x ≤ 1.

(30)

4.2.4 2D Example

Here we solve the variational problem (4) where f is the sixth degree, two
variables polynomial:

f(x, y) = ((x− 0.1)2 +(y +0.1)2)((x− 1)2 +(y− 1)2)((x− 2)2 +(y +1)2) (31)

and the boundary condition is a =
(

1
2 , 0

)
. In this case, we obtain the optimal

measure:
µ∗ = 0.1205δ(2,−1) + 0.19δ(1,1) + 0.6895δ(0.1,−0.1)

whose support is illustrated in Figure 9 beside six different minimizers in (W 1,∞(0, 1))2.
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(a) Minimizers when a = (0.9, 0.1) (b) Minimizers when a = (0.9, 0.1)

(c) Minimizers when a = (0.9, 0.1)

Figure 6: Minimizers of a 2D non convex variational problem.

4.2.5 2D Example

For the sixth degree polynomial:

f(x, y) = ((x− 1)2 + (y + 1)2)((x− 2)2 + (y − 2)2)((x− 0.3)2 + (y + 0.5)2)

and the boundary condition a = (1.2, 0) we obtain the optimal measure

µ∗ = 0.3074δ(2,2) + 0.5439δ(1,−1) + 0.1487δ(0.3,−0.5)

and the (W 1,∞(0, 1))2 minimizers shown in Figure 10.

5 Concluding Remarks

In this paper we have presented a practical way for solving non-convex, varia-
tional problems in the form (4) by using semidefinite relaxations. We propose
a constructive approach which allows us to calculate minimizers of (4). To
overcome the difficulties of the characterization of multidimensional algebraic

13



(a) Non convex surface (b) Support of the optimal measure

Figure 7: Analysis of a convex envelope

moments, we use well known procedures to determine one-dimensional measures
from its moments on the marginal distributions of bivariate probability distribu-
tions. In addition, we determine general conditions on f and a which guarantee
the applicability of our proposal. Although there are qualitative, important
differences between the one-dimensional case and the multi-dimensional cases,
in practice we can solve many non-convex variational problems in the form (4)
by reducing them to exact semidefinite relaxations which provide sets of mini-
mizers. On the other hand, the analysis of convex envelopes of functions with
respect to other kinds of convexities like polyconvexity, rank one convexity and
quasiconvexity is crucial for a better understanding of oscillatory phenomena in
non-linear elasticity [7, 9, 41]. Recent advances on this matter with moments
and global optimization techniques can be found in [3, 34].
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