
C
oa

rs
e-

co
m

pa
ct

if
ic

at
io

n 
ap

pr
oa

ch
 to

 n
on

-c
on

ve
x 

V
P:

 v
er

si
on

 1
1/

8/
05

Coarse-convex-compactification approach

to numerical solution of nonconvex

variational problems
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Abstract. In non-convex optimization problems, in particular in non-convex
variational problems, there usually does not exist any classical solution but only
generalized solutions which involve generalized Young functionals (e.g. Young
measures or only some moments of them). In this paper, after reviewing briefly
the relaxation theory for such problems, an approximation scheme based on coarse
compactifications by only a finite number of moments and a finite-element approx-
imation in the functional space of the problem is proposed and analyzed. Special
attention is paid to problems involving polynomial nonlinearities, which leads to
a relaxed formulation into a convex program based on linear matrix inequalities
constraints with semidefinite programming structure. Finally, calculations of an
illustrative 2D “broken-extremal” example are presented.

Key Words. Relaxed variational problems, convex approximations, method of
moments, semidefinite programming.

AMS Subject Classification: 49M05, 65K10, 65N30, 90C22.

1 Introduction

Nonconvex optimization problems often lack any solution because of fast oscillations

of minimizing sequences that eventually break lower semicontinuity with respect to

a weak convergence, cf. [69] and references therein for a survey on scalar variational

problems which will be the first concern in this paper. Therefore, a relaxation is
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way of relaxation is certainly a suitable continuous extension, using also a suitable

linear-space structure not necessarily completely coherent with the linear structure

occurring in the formulation of the original problem. Thus extended, (this is called a

relaxation), nonconvex problems then may get a convex structure even if the original

problem does not have any. For a large class of problems, a so-called generalized

Young functionals (representing a generalization of conventional Young measures,

cf. e.g. [65]) represent a suitable tool.

The relaxed problems can be discretized by a theory of convex approximation of

the set of the generalized Young functionals developed recently in [63, 64, 65], see

also [38, 55, 56] or a survey paper [67]. Thus the relaxed problem can directly be

implemented on computer, without approximating the original non-relaxed problem;

cf. [11, 26, 27, 36, 49, 50, 53, 54, 65, 68] for this approach. If the (additively coupled,

cf. e.g. (P) below) problem is linear in a lower-order term (i.e. ϕ0(x, ·) in (P) is

linear), such approach leads to a linear-programming problem and was shown very

efficient in [3]. In the quadratic case, it naturally leads to a quadratic-programming

problem, which is a considerably less efficient but still possible approach if the

dimensionality is not too high, cf. [11, 36, 38, 68]. For non-quadratic case, one can

still consider various iterative schemes, see Remark 3.9 below.

All the above mentioned references use conventional Young measures and treat

them numerically in various more or less sophisticated ways. However, if the partic-

ular problem involves only a finite number of nonlinearities, it suffices to consider

only moments of these Young measures with respect to these nonlinearities. This is

the general idea of coarse convex compatifications as thoroughly exposed in [65]. In

general, it is not easy to characterize explicitly such convex compactifications how-

ever. The goal of this paper is to exploit this alternative coarse-compactification

approach in a particular case where the involved nonlinearities are polynomials. We

show the success of this approach on a concrete problem of scalar multidimensional

variational calculus with an additively coupled integral functional:

(P)





Minimize Φ(u) :=

∫

Ω

ϕ1(x,∇u(x)) + ϕ0(x, u(x)) dx,

subject to u ∈ W 1,p(Ω), u|∂Ω = uD,

where Ω ⊂ R
n is a bounded domain with Lipschitz boundary ∂Ω and the boundary

condition uD ∈ W 1−1/p,p(∂Ω) given; for more general problems see Remark 3.13

below. This paper formalizes ideas introduced in [39, 40, 41, 44, 45, 46] where

authors use projections of Young measures onto finite dimensional convex bodies,

in order to explicitly calculate the generalized solution of non-convex variational

problems in Young measures.
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we introduce the relaxation theory for the nonconvex variational problems (P) and

an approximation by finite-element method. Section 3 is devoted to problems with

polynomial nonlinearities and we also present there an explicit characterization of

generalized Young functionals. In Section 4 we report on the performance of our

algorithm applied to a benchmark model problem.

2 Relaxation by convex compactifications and its

approximations

In this section we define the employed relaxation of (P) which is a continuous exten-

sion of (P) in terms of generalized Young functionals as suggested in [65, Chap.5].

We briefly state a construction of suitable envelopes of the Lebesgue space involved

in (P), formulate the relaxed problem (RP ) and the main results concerning the

connections between (P) and (RP ), as well as its approximation.

2.1 Convex local compactifications of Lp-spaces
cc

Following [65, 66], we will briefly present a fairly universal construction of locally

compact envelopes of the Lebesgue Lp-spaces that are also convex in a natural linear

space and allow for a continuous and affine extension of Nemytskĭı mappings. We

assumed Ω ⊂ R
n a bounded Lipschitz domain (here in Sect. 2.1, in fact, the Lipschitz

property is not needed), and let us consider the Lebesgue space Lp(Ω; Rm) = {u :

Ω → R
m measurable;

∫
Ω
|u(x)|pdx < +∞}. We define a normed linear space

Carp(Ω; Rm) :=
{
h : Ω × R

m → R; ,

h(·, s) measurable, h(x, ·) continuous,

∃a ∈ L1(Ω), b ∈ R : |h(x, s)| ≤ a(x) + b|s|p
}

(2.1)

of Carathéodory’s “test integrands”, and dote it with the norm
∥∥h

∥∥
Carp(Ω;Rm)

:= inf
|h(x,s)|≤a(x)+b|s|p

∥∥a
∥∥

L1(Ω)
+ b. (2.2)

The essential trick is to consider a sufficiently large (but preferably still separable)

linear subspace H ⊂ Carp(Ω; Rm), to define the embedding

iH : Lp(Ω; Rm) → H∗ : u 7→
(
h 7→

∫

Ω

h(x, u(x))dx
)
, (2.3)

and eventually to put

Y p
H(Ω; Rm) := the weak* closure of iH(Lp(Ω; Rm)). (2.4)

3
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H(Ω; Rm) is always convex in H∗. Assuming, rather for simplic-

ity, that H contains at least one coercive integrand, i.e. H ∋ h0 with h0(x, s) ≥ |s|p,
then Y p

H(Ω; Rm) is a convex locally compact hull of Lp(Ω; Rm) and Lp(Ω; Rm) it-

self is embedded into it (norm,weak*)-continuously. Moreover, if H is rich enough

(cf. [65, 66] for details), then this embeddeding iH is even homeomorphical. If H is

separable, then Y p
H(Ω; Rm) is locally sequentially compact. Thus Y p

H(Ω; Rm) may be

considered as indeed a very natural envelope of Lp(Ω; Rm).

Moreover, let us define h •η as a Borel measure on Ω̄ by
∫
Ω̄

g(x)[h •η](dx) =

〈h •η, g〉 = 〈η, gh〉 where [gh](x, s) = g(x)h(x, s) and g ∈ C(Ω̄), where Ω̄ denotes

the closure of Ω. Here we need that H is so-called C(Ω̄)-invariant in the sense that

gh ∈ H whenever g ∈ C(Ω̄) and h ∈ H .

Further, we say that η ∈ Y p
H(Ω; Rm) is p-nonconcentrating if there is a sequence

{uk}k∈N such that η = w*- limk→∞ iH(uk) and {|uk|p; k ∈ N} is weakly relatively

compact in L1(Ω). Let us denote the set of all such η’s by
◦

YH
p

(Ω; Rm).

If H is separable, any η ∈
◦

YH
p

(Ω; Rm) has a Lp-Young measure representation ν

in the sense that there is a weakly* measurable mapping x 7→ νx, νx a probablity

measure on R
m, such that x 7→ |s|pνx(ds) belongs to L1(Ω) and

∀h ∈ H : 〈η, h〉 =

∫

Ω

∫

Rm

h(x, s) νx(ds)dx, (2.5)

see [65, Proposition 3.4.15]. It holds that [η •h](x) =
∫

Rm h(x, s) νx(ds) for a.a. x ∈
Ω.

2.2 Relaxation of (P)

We use the construction from Section 2.1 for m = n. We will assume that ϕ1 :

Ω×R
n → R and ϕ0 : Ω×R → R are Carathéodory functions satisfying, for almost

all x ∈ Ω, all s ∈ R
n, and all u ∈ R,ass1

c1|s|p ≤ ϕ1(x, s) ≤ c2(1 + |s|p), (2.6a) ass1a

|ϕ0(x, u)| ≤ a(x) + c3|u|q, (2.6b) ass1b

where p > 1, c1, c2, c3 > 0, a ∈ L1(Ω), and 1 < q < pn/(n − p) if p < n and

1 < q < ∞ if p ≥ n. Then we will consider the already announced relaxed problem

in the form:

(RP )






Minimize Φ̄(u, η) :=

∫

Ω

[
ϕ1 •η

]
(x) + ϕ0(x, u(x))dx,

subject to [Id •η](x) = ∇u(x) for a.a. x ∈ Ω,

u ∈ W 1,p(Ω), η ∈ Y p
H(Ω; Rn), u|∂Ω = uD,

4
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which shows that (RP ) is indeed a proper relaxation of (P), is based on results by

Kinderlehrer and Pedregal [23, 57], therein we have:

thm1 Proposition 2.1 (See [65, Propositions 5.2.1 and 5.2.6].) Let (2.6) hold, p > 1, H

be C(Ω̄)-invariant, ϕ1 ∈ H, and Id ∈ Hn. Then:

(i) (RP ) admits a solution.

(ii) inf(P) = min(RP).

(iii) The embedding eH : W 1,p(Ω) → W 1,p(Ω) × Y p
H(Ω; Rn) : v 7→ (v, iH(∇v)) of

any minimizing sequence for (P) has a weakly convergent subsequence whose
(weak×weak∗) limit is a solution to (RP ).

(iv) Each solution to (RP ) is p-nonconcentrating and is the (weak×weak∗) limit
of some minimizing sequence for (P) embedded via eH .

The consequence of Proposition 2.1(iv) is that we can replace Y p
H(Ω; Rn) by

◦

YH
p

(Ω; Rn) with an equal effect.

2.3 Finite-element discretization in space
sect-FE

As to the discretisation of Ω, we suppose that Ω is a polyhedral and we also consider,

for a discretization mesh parameter d > 0 (ranging a countable set having 0 as its

accumulation point), a triangulation Td of Ω composed from simplexes S ∈ Td such

that maxS∈Td
diam(S) ≤ d and Td1

⊂ Td2
for d1 ≥ d2 > 0, i.e. we consider nested

triangulations refining everywhere on Ω when d ց 0. Then we define Pd by

[Pdh](x, s) :=
1

measn(S)

∫

S

h(ξ, s)dξ if x∈S∈Td. (2.7)

Requiring Pd : H → H , we must consider such H which contains also discontinuous

element-wise constant integrands. As we consider a sequence of triangulations Td, it

is still possible to take H separable in the norm (2.2). In this norm, one can see that

‖Pdh‖Carp(Ω;Rm) ≤ ‖h‖Carp(Ω;Rm) and Pd◦Pd = Pd, so that Pd : H → H is a continuous

projector. By [65, Proposition 3.5.9], it holds that P ∗
d Y p

H(Ω; Rn) ⊂ Y p
H(Ω; Rn). By

[65, Proposition 3.5.2(iv)], we have
⋃

d>0 P ∗
d Y p

H(Ω; Rn) weakly* dense in Y p
H(Ω; Rn).

This suggests to approximate (RP) by restricting it on a convex subset P ∗
d Y p

H(Ω; Rn)

instead of Y p
H(Ω; Rn). Since any η ∈ P ∗

d Y p
H(Ω; Rn) is element-wise constant, holding

the constraint Id •η = ∇u, the underlying u will then be automatically element-wise

affine. By this way we come to the following approximate relaxed problem:

(RPd)





Minimize Φ̄(u, η) :=

∫

Ω

[
ϕ1 •η

]
(x) + ϕ0(x, u(x)) dx,

subject to [Id •η](x) = ∇u(x) for a.a. x ∈ Ω,

u ∈ W 1,p(Ω) element-wise affine on Td,

η ∈ P ∗
d Y p

H(Ω; Rn), u|∂Ω = uD.

5
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G0 :=
⋃

d>0

{
g∈L∞(Ω); ∀S∈Td : g|S ∈ C(S̄)

}
(2.8)

where g|S ∈ C(S̄) means existence of a continuous extension on S̄ of the restriction

g|S.

prop-FE Proposition 2.2 (See [65, Proposition 5.5.1].) Let H be separable, G-invariant,

and satisfy G ⊗ V ⊂ H ⊂ cl(G ⊗ V ) for some linear space G ⊂ L∞(Ω) containing

G0 and for some linear space V of continuous functions on R
n of at most p-growth,

where the closure “cl” refers to the norm (2.2) and “⊗” means the usual tensorial

products, i.e. for functions [g⊗v](x, s) = g(x)v(s) and for spaces G⊗V is the linear

span of {g ⊗ v; g ∈ G, v ∈ V }. Then:

(i) A solution (ud, ηd) to (RPd) always exists.

(ii) Moreover, limd→0 min(RPd) = min(RP) and there always exists a subsequence
of di → 0 such that (udi

, ηdi
) (weak×weak*)-converges in W 1,p(Ω)×H∗. More-

over, the limit of any such a subsequence solves (RP).

Remark 2.3 As Pd is a projector, it holds that
∫

Ω

ϕ1 •ηd dx = 〈ηd, ϕ1〉 = 〈P ∗
d ηd, ϕ1〉 = 〈P ∗

d P ∗
d η, ϕ1〉

= 〈P ∗
d η, Pdϕ1〉 = 〈ηd, Pdϕ1〉 =

∫

Ω

(Pdϕ1) •ηd dx (2.9)

for any ηd ∈ P ∗
d Y p

H(Ω; Rn), i.e. ηd = P ∗
d η for some η ∈ Y p

H(Ω; Rn), and therefore we

can equally consider ϕ1 in (RPd) replaced by its element-wise constant interpolant

Pdϕ1. Also, by [65, Proposition 5.5.1(ii)], P ∗
d Y p

H(Ω; Rn) in (RPd) can be replaced

by P ∗
d

◦

YH
p

(Ω; Rn) with an equal effect.

In the following remark, we focus on the Weierstrass Maximum Principle as a nec-

essary condition for general variational problems.

WMP Remark 2.4 Fixing d > 0, the neccessary optimality conditions for (RPd) which

any solution (ud, ηd) to (RPd) must satisfy are the existence of a vector field λd ∈
L∞(Ω; Rn) element-wise constant satisfying, roughly speaking, one half of the Euler-

Lagrange equation divλd = [ϕ0]
′
u(x, ud) after discretized by finite elements, i.e.

∀z∈W 1,∞(Ω) element-wise affine on Td :

∫

Ω

λd ·∇z +
∂ϕ0(x, ud)

∂u
z dx = 0, (2.10)

and the Weierstrass maximum principle in the sense

[
λd ⊗ Id − Pdϕ1

]
•ηd = max

s∈Rn

(
λd(x) · s − [Pdϕ1](x, s)

)
for a.a. x ∈ Ω, (2.11)

6
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plier to the constraint Id •η = ∇u in (RPd). If ϕ0(x, ·) is convex, then these

optimality conditions are also sufficient. Indeed, formula (2.11) suggests the

use of a relaxation in probability measures of the global optimization problem:

maxs∈Rn(λd(x) · s− [Pdϕ1](x, s)). This is just the approach presented in [28, 42, 43]

for global optimization of polynomials.

3 Polynomial nonlinearities – method of moments
sect-poly

The definition (2.4) is very implicit. To implement the discretized relaxed prob-

lem on a computer, in view of Proposition 2.1(iv), we definitely need an explicit

characterization of elements from Y p
H(Ω; Rn), or at least from Pd

◦

YH
p

(Ω; Rn), and

possibly a further discretization of P ∗
d Y p

H(Ω; Rn) if it is still infinite-dimensional,

cf. [11, 38, 64, 65, 67]. Now we will focus on the case where all integrands from H

are polynomials with order at most 2k, k ∈ N; i.e. h(x, ·) ∈ Π2k(R
n) where Π2k(R

n) is

the family of all n-dimensional polynomials with degree 2k at the most. The decisive

advantage of such choice is that PdH is finite-dimensional and then P ∗
d Y p

H(Ω; Rn) is

automatically homeomorphic to a convex subset of a finite-dimensional Euclidean

space; notice the constraints mS,0,··· ,0 = 1 for S ∈ Td in (MPd,k,κ) below. Therefore,

in this case, no further discretization of P ∗
d Y p

H(Ω; Rn) is needed.

We assume k ∈ N given and choose p = 2k. Further choose

H = Hk :=

2k−1∑

l=1

Lp/(p−l)(Ω) ⊗ Πl(R
n) + G0 ⊗ Π2k(R

n) (3.1)

where G0 is from (2.8). Note that Hk is a linear subspace of Carp(Ω; Rn) and, by the

arguments presented in [66], it can be proved that it is separable. Hence it satisfies

the assumptions of Proposition 2.2 with G = G0 and V = Π2k(R
n).

In this special case, every η can be represented by its moments

mι = η • (1 ⊗ sι1
1 · · · sιn

n ) (3.2)

where ι = (ι1, · · · , ιn) is the multi-index of non-negative integers such that

|ι| := ι1 + · · · + ιn ≤ 2k. Namely, for any h ∈ Hk with Hk from (3.1),

i.e. h =
∑

|ι|≤2k gι(x)sι1
1 · · · sιn

n with uniquely determined gι ∈ Lp/(p−|ι|)(Ω), it holds

that

〈η, h〉 =
∑

|ι|≤2k

〈η, gι ⊗ sι1
1 · · · sιn

n 〉 =
∑

|ι|≤2k

∫

Ω

gι(x)mι(x) dx. (3.3)

Further, denoting m = (mι)|ι|≤2k, we define the matrix Hk(m) as

Hk(m) :=
(
mι1+ι′

1
,··· ,ιn+ι′n

)
0≤ι1+ι′

1
≤k,··· ,0≤ιn+ι′n≤k

(3.4)

7
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31, 32, 33, 34, 35, 58, 59, 60, 61] we define the localizing matrix Lk(m) as

(
̺2

dmι1+ι′
1
,··· ,ιn+ι′n − mι1+ι′

1
+2,··· ,ιn+ι′n − · · · − mι1+ι′

1
,··· ,ιn+ι′n+2

)
0≤ι1+ι′

1
≤k−1,··· ,0≤ιn+ι′n≤k−1

(3.5)

It is well known that a probability measure µ on R
n induces a moments sequence

mι =
∫

Rn sι1
1 · · · sιn

n dµ(ds) which always makes the matrix Hk(m) positive semidefi-

nite. The converse, i.e. existence of a probability measure µ inducing a prescribed

sequence (mι)|ι|≤2k with Hk(m) � 0 and m0(x) = 1 as its moments, is unfortunately

not true even in n = 1 or even when Hk(m) ≻ 0 and n > 1. The role of the localizing

matrix Lk(m) is revealed when we focus on the family of measures supported on the

n-dimensional ball B̺d
:= {s ∈ R

n; s2
1 + · · · + s2

n ≤ ̺2
d}. Thus, a probability mea-

sure µ on B̺d
induces a moments sequence mι =

∫
B̺d

sι1
1 · · · sιn

n dµ(ds) which makes

the localizing matrix Lk(m) positive semidefinite. Even considering the localizing

matrix Lk(m), the converse statement is no longer true again, however something

useful can be done by applying recent characterizations of positive polynomials on

compact semialgebraic sets like the ball B̺d
. We will back on this issue below when

we face the multidimensional case. See [28, 29, 34, 35, 58, 59, 60, 61].

3.1 The one-dimensional case

In the one-dimensional case, the matrix Hk(m) = (mι+ι′)0≤ι+ι′≤k takes the form of a

Hankel matrix [mι+ι′ ]
k
ι,ι′=1. This one-dimensional case is particularly simple because

the closure of the cone of moments of positive measures in the real line, i.e.

M = {m ∈ R
2k+1 : m =

∫

R

(1, t, . . . , t2k)dµ(t) for a positive measure µ in R}
(3.6)

is precisely the cone of vectors m ∈ R
2k+1 which make Hk(m) positive semidefinite.

Although not every vector m ∈ R
2k+1 satisfying this condition is a vector of mo-

ments, in the one dimensional case the coercivity of ϕ avoids any difficulty. The

following lemma from [39, 40, 41] clarifies this point.

Lemma 3.1 Let ϕ(t) =
∑2k

ι=0 cιt
ι be a one dimensional, coercive polynomial (i.e.

c2k > 0). Therefore, any solution m∗ of the semidefinite program:

(SDP)






Minimize c · m :=

2k∑

ι=0

cιmι

subject to Hk(m) � 0
with m0 = 1 and m1 = a,

8
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stract optimization problem defined in measures:

(AOP)






Minimize 〈ϕ, µ〉 :=

∫

R

ϕ(t)dµ(t)

subject to
∫

R
tdµ(t) = a

µ ∈ P(R)

where P(R) stands for the family of all probability measures supported in the real

line R. The converse is also true, i.e. when µ∗ solves (AOP) its algebraic moments

solve (SDP).

On one hand, this fact certainly allows us to determine exact relaxations in the

one dimensional case. On the other hand, it also has an important geometrical

meaning in convex analysis. Since the polynomial ϕ is coercive in R, every point

on the graph of its convex envelope ϕc can be expressed as a convex combination

of points on the graph of ϕ itself. By applying classical Caratheodory’s theorem in

convex analysis we obtain the following formula:

(a, ϕc(a)) = λ1(a1, ϕ(a1)) + λ2(a2, ϕ(a2)) (3.7) convexa

where the coefficients λi represent a convex combination. It is remarkable that

every optimal measure for (AOP) comes from the geometrical representation in

(3.7). Thus, a probability measure µ satisfies (AOP) if and only if it satisfies the

equation:

(a, ϕc(a)) =

∫

R

(t, ϕ(t))dµ(t) (3.8)

see [39, 40, 41, 42, 46]. From this observation we can see that

µ = λ1δa1
+ λ2δa2

(3.9)

is a solution of (AOP), where the coefficients λi and the points ai, all together,

satisfy (3.7). Thus, we can use a set of optimal values m∗ from the semidefinite

program (SDP) to determine the support and the weights of an optimal measures

µ solving (AOP). These facts can be used to prove the following result, later they

will also be useful when applied into the multidimensional setting.

Proposition 3.2 Assume that ϕ1(x, t) =
∑2k

ι=0 gι(x)tι is a coercive, one dimen-

sional polynomial in t, for almost every x ∈ [0, 1] then

(OCP)





Minimize Φ(m, u) =

∫ 1

0

{
2k∑

ι=0

gι(x)mι(x) + ϕ0(u, x)}dx

subject to m0(x) = 1, u′(x) = m1(x)
Hk(m(x)) � 0 for every x ∈ [0, 1]
u(0) = uD(0), u(1) = uD(1)

9
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solution. Moreover, every solution m∗ of (OCP) can be traced back to a particular

optimal η∗ for the corresponding one dimensional case in the formulation (RP ),

in the sense that m∗ is the vector function of the algebraic moments of the Young

measure η∗. That is m∗
ι = η∗ • (1 ⊗ sι) for ι = 0, · · · , 2k.

This result has been proved and exploited constructively in [6, 39, 40, 41, 42, 46].

Notice that coercivity of ϕ1 implies a finite, rather simple, support of the optimal

measures of (RP ). We would like to remark here, that in the one-dimensional

case the relaxation of (RP ) takes the form of a convex optimal control problem as

(OCP), which must have at least a minimizer under coercivity assumptions. See

[13, 18, 47, 48, 51, 72].

An analogous assertion holds for piecewise constant η’s from Pd

◦

YHk

p

(Ω; Rn). This

fact suggests to formulate (RPd) in terms of moments. Let Td be an equidistant par-

tition with d > 0 a mesh size. Then the approximate problem in terms of moments

looks as:

(MPd)





Minimize Φ̂(u, m) :=

1/d∑

i=1

2k∑

ι=0

gi,ιmi,ι +

∫ 1

0

ϕ0(x, u(x))dx,

subject to mi,0 = 1, mi,1 = u′(x) for x ∈
(
(i−1)d, id

)
,

Hk(mi,0, · · · , mi,2n) � 0 for all i = 1, · · · , 1/d,

u ∈ W 1,p(Ω) element-wise affine on Td,

u(0) = uD(0), u(1) = uD(1),

where the coefficients gi,ι come from the expansion of the element-wise constant

integrand Pdϕ1, i.e.

[
Pdϕ1

]
(x, s) =

2k∑

ι=0

gi,ιs
ι for x ∈

(
(i−1)d, id

)
. (3.10)

Thus we turned the problem (RPd) into a semidefinite programming problem. De-

pending whether ϕ0(x, ·) is linear, convex quadratic, or more general, more or less

efficient computer codes are available for solving it, e.g. the primal-dual interior

point algorithm, generalized augmented-Lagrangian method [24], or a log-barrier

method, respectively. For this approach, see [39, 40, 41, 46] where the last method

has been applied.

From the analysis of the one dimensional case exposed above, the following equiv-

alence clearly follows:

Proposition 3.3 If n = 1, (2.6) requirements hold and ϕ1 is a polynomial with

degree 2k, i.e. (3.10) holds, then the problem (RPd) with H from (3.1) is equivalent

10
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(i) min(RPd) = min(MPd), and

(ii) (u∗, η∗) solves (RPd) if and only if (u∗, m∗) solves (MPd), where optimal η∗

is related to optimal m∗ through (3.2), which means here m∗
ι = η∗ • (1⊗ sι) for

ι = 0, · · · , 2k.

It is worth to mention here, that we can use algebraic tools for constructing finite

supported measures from a finite set of their moments, so we can use the optimal

vectors m∗
d from (MPd) to estimate a η∗

d as a minimizer of (RPd). See [42, 43].

3.2 The multi-dimensional case

The Multidimensional Moment Problem is still an open problem in pure and ap-

plied mathematics see [1, 5, 12, 22, 25, 70]. Nonetheless, important progress has been

made in recent years as algebraists have been able to characterize positive polyno-

mials defined in compact semi-algebraic sets [14, 15, 16, 19, 21, 35, 71]. This result

has been applied to global optimization of polynomials and non-convex situations in

optimization theory, see [28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 46, 52, 58,

59, 60, 61]. We use this methodology here to transform (RPd) into a convex opti-

mization problem in which the Young-measures νd are represented as moments-like

vectorial functions md within a proper convex mathematical program. In particular

we will follow J.B. Lasserres’s approach on global optimization of polynomials given

in [28, 29, 30, 31, 32, 33] to describe the convex envelope of n-dimensional coercive

polynomials by semidefinite programming.

The case n > 1 is much more complicated because the characterization of ele-

ments η from
◦

YH
p

(Ω; Rn) only can be attained in a limit sense, provided that the

supports of the parametrized measures in the Young measure representation of η lie

in a compact semi-algebraic set. Thus, we assume that every parametrized measure

νx is supported on the n-dimensional ball: B̺d
:= {s ∈ R

n; s2
1 + · · · + s2

n ≤ ̺2
d}

where ̺d is chosen to convenience. Due to the uniform coercivity of ϕ1, cf. (2.6a),

the maximum on the right-hand side of (2.11) can be achieved inside a ball B̺d

for ̺d sufficiently large. By proceeding in this way, we can apply recent results

on the characterization of multidimensional moments without changing the original

formulation of the problem.

It is enlightening for our approach to focus on the convex envelope of the in-

tegrand ϕ1(x,∇u(x)) with respect to the gradient variables. Indeed, it has been

observed by other authors that this kind of convexification allows us to obtain an

exact convex relaxation of the original non-convex problem (P). Thus, when we

consider the convex formulation:

11
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(CP)





Minimize Φc(u) :=

∫

Ω

Cϕ1(x,∇u(x)) + ϕ0(x, u(x)) dx,

subject to u ∈ W 1,p(Ω), u|∂Ω = uD,

we obtain an exact relaxation of (P) see [17, 20, 57, 65]. After a proper discretization

as described in Section 2, we must center our attention on the discretized convexified

problem:

(CPd)





Minimize Φc(u) :=

∫

Ω

Cϕ1(x,∇u(x)) + ϕ0(x, u(x)) dx,

subject to u ∈ W 1,p(Ω), element-wise affine on Td, u|∂Ω = uD.

We will prove next that (CPd) is also equivalent to (RPd) under proper coercivity

assumptions.

Proposition 3.4 (See [57].) By assuming the coercivity requirements on ϕ1 givenlema

in 2.6a, we have the following results:

1. Let u∗ be a solution for (CP). The couple (u∗, η∗) with η∗ ∈ Y p
H(Ω; Rn) is a so-

lution of (RP) provided that Cϕ1(x,∇u∗(x)) =
[
ϕ1 •η∗

]
(x) and [Id •η∗](x) =

∇u∗(x) for almost every x ∈ Ω.

2. Reciprocally, if (u∗, η∗) solves (RP), the function u∗ is a solution for (CP)

and they solve the equations Cϕ1(x,∇u∗(x)) =
[
ϕ1 •η∗

]
(x) and [Id •η∗](x) =

∇u∗(x) for almost every x ∈ Ω.

Lemma 3.5 (See [17].) Given a n-dimensional polynomial ϕ : R
n → R satisfyingDacorogna

c1|s|p ≤ ϕ(s) ≤ c2(1 + |s|p) for every s ∈ R
n, with p > 1 and positive constants c1

and c2, we can determine its convex envelope at a fixed point a ∈ R
n as:

(ECP) Cϕ(a) =





Minimize 〈ϕ, µ〉 :=

∫

Rn

ϕ(s)dµ(s)

subject to
∫

Rn sdµ(s) = a
µ ∈ P(Rn)

where P(Rn) is the family of all Borel regular, probability measures supported in R
n.

coment Remark 3.6 At the boundary point (a, Cϕ(a)) there exists a supporting hiperplane

for the convex set Epi(Cϕ). Such hiperplane can be defined by a linear-afin function

La : R
n → R which satisfies La ≤ Cϕ ≤ ϕ and La(a) = ϕ(a). Thus, we easily

characterize the optimal measures µ∗ for (ECP) as the set of probability measures

12



C
oa

rs
e-

co
m

pa
ct

if
ic

at
io

n 
ap

pr
oa

ch
 to

 n
on

-c
on

ve
x 

V
P:

 v
er

si
on

 1
1/

8/
05 supported in Fa = {s ∈ R

n : La(s) = ϕ(s)} satisfying a =
∫

Rn sdµ∗(s). Hence,

we find that a necessary condition for µ∗ to be optimal in (ECP) is that µ∗ be

supported in {s ∈ R
n : Cϕ(s) = ϕ(s)}. Reader should notice why this condition is

not sufficient.

lema2 Proposition 3.7 By assuming the coercivity requirements on ϕ1 given in 2.6a, the

discrete problem (CPd) is equivalent to (RPd) in the following sense:

1. Let u∗
d be a solution for (CPd). The couple (u∗

d, η
∗
d) with η∗ ∈ P ∗

d Y p
H(Ω; Rn)

is a solution of (RPd) provided that Cϕ1(x,∇u∗
d(x)) =

[
ϕ1 •η∗

d

]
(x) and

[Id •η∗
d](x) = ∇u∗

d(x) for every S ∈ Td.

2. Reciprocally, if (u∗
d, η

∗
d) solves (RPd), the function u∗

d is a solution for (CPd)

and they solve the equations:

Cϕ1(x,∇u∗
d(x)) =

[
ϕ1 •η∗

d

]
(x) and [Id •η∗

d](x) = ∇u∗
d(x) (3.11)

for every S ∈ Td. Notice that equations 3.11 are satisfied in an element wise

way, being constant inside every triangle S ∈ Td.

Proof.

1. Let (ud, ηd) be an admissible solution for the relaxed problem (RPd), then

[Id •ηd](x) = ∇ud(x) for every S ∈ Td. Since u∗
d is optimal for (CPd), we have:

∫

Ω

Cϕ1(x,∇ud(x)) + ϕ0(x, ud(x)) dx ≥
∫

Ω

Cϕ1(x,∇u∗
d(x)) + ϕ0(x, u∗

d(x)) dx.(3.12)

By using Lemma 3.5, we can see that

∫

Ω

[ϕ1 •ηd](x) + ϕ0(x, ud(x)) dx ≥
∫

Ω

Cϕ1(x,∇ud(x)) + ϕ0(x, ud(x)) dx(3.13)

and finally we have

∫

Ω

[ϕ1 •ηd](x) + ϕ0(x, ud(x)) dx ≥
∫

Ω

[ϕ1 •η∗
d](x) + ϕ0(x, u∗

d(x)) dx (3.14)

because of the assumptions on u∗ and η∗. Thus, we have shown that (u∗
d, η

∗
d)

is optimal for the problem (RPd).

13
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d be the Young measure induced by the convex envelope of ϕ1 according

to Lemma 3.5, i.e.

Cϕ1(x,∇u∗
d(x)) =

[
ϕ1 •η∗∗

d

]
(x) and [Id •η∗∗

d ](x) = ∇u∗
d(x) (3.15)

for every S ∈ Td. As (u∗
d, η

∗∗
d ) is admissible and (u∗

d, η
∗
d) is optimal for the

problem (RPd), we have
∫

Ω

[ϕ1 •η∗∗
d ](x) + ϕ0(x, u∗

d(x)) dx ≥
∫

Ω

[ϕ1 •η∗
d](x) + ϕ0(x, u∗

d(x)) dx (3.16)

then∫

Ω

Cϕ1(x,∇u∗
d(x))dx =

∫

Ω

[ϕ1 •η∗∗
d ](x)dx ≥

∫

Ω

[ϕ1 •η∗
d](x)dx ≥

∫

Ω

Cϕ1(x,∇u∗
d(x))dx.(3.17)

Hence,
∫

Ω

[ϕ1 •η∗
d](x)dx =

∫

Ω

Cϕ1(x,∇u∗
d(x))dx. (3.18)

By applying Lemma 3.5 again, we can claim that

Cϕ1(x,∇u∗
d(x)) ≤ [ϕ1 •η∗

d](x) (3.19)

for every S ∈ Td. But the integrals in 3.18 can be expressed as a finite sum on

the members of Td. Thus, we have:
∑

S∈Td

∫

S

[ϕ1 •η∗
d](x)dx =

∑

S∈Td

∫

S

Cϕ1(x,∇u∗
d(x))dx. (3.20)

Therefore, we can conclude that:

[ϕ1 •η∗
d](x) = Cϕ1(x,∇u∗

d(x)) = [ϕ1 •η∗∗
d ](x) (3.21)

for every S ∈ Td. In this way we can see that η∗∗
d = η∗

d. Herein that

Cϕ1(x,∇u∗
d(x)) =

[
ϕ1 •η∗

d

]
(x) and [Id •η∗

d](x) = ∇u∗
d(x) (3.22)

for every S ∈ Td. To see that u∗
d is optimal for the convexified problem (CPd),

we take an admissible ud for (CPd) and we define ηd as the Young measure

induced by the convex envelope of ϕ1 according to Lemma 3.5. Therefore, we

have: ∫

Ω

Cϕ1(x,∇ud(x)) + ϕ0(x, ud(x)) dx

=

∫

Ω

[ϕ1 •ηd](x) + ϕ0(x, ud(x)) dx

≥
∫

Ω

[ϕ1 •η∗
d](x) + ϕ0(x, u∗

d(x)) dx

=

∫

Ω

Cϕ1(x,∇u∗
d(x)) + ϕ0(x, u∗

d(x)) dx.

(3.23)

In this way we conclude that u∗
d is optimal for (CPd).

14
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From Proposition 3.7, it is clear the role of the convex envelope of the polynomial

ϕ1 into the relaxed formulation (RPd). From Lemma 3.5, it is also clear that

the convex envelope of a multidimensional polynomial ϕ1 can be described by a

particular optimization problem defined in probability measures. Thus, we can apply

the moments technique to the relaxed formulation (RPd), taking into account that

we must obtain at last the convex envelope of the polynomial ϕ1 to be certain that

we are in presence of an exact relaxation of the original problem. See [44]. The

following result supports such approach.

propo Proposition 3.8 Consider the convex, relaxed and discretized problem:

(MPd,κ)






Minimize Φ̂(u, m) :=
∑

S∈Td

k∑

ι=0

φS,ιmS,ι +

∫

Ω

ϕ0(x, u(x))dx,

subject to mS,ei
=

∂u

∂xi
on S∈Td, i = 1, · · · , n,

mS,0,··· ,0 = 1,

Hκ

(
{mS,ι}|ι|≤2κ

)
� 0,

Lκ

(
{mS,ι}|ι|≤2(κ−1)

)
� 0,





for all S∈Td,

u ∈ W 1,p(Ω) element-wise affine of Td, u|∂Ω = uD,

where ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ R
n is the vector with 1 on the i-th position and

where, similarly as in (MPd,k), the coefficients φS,ι come from the expansion of

the element-wise constant integrand Pdϕ1, i.e. [Pdϕ1](x, s) =
∑k

ι=0 φS,ιs
ι1
1 · · · sιn

n for

x ∈ S ∈ Td. We claim that:

1. (MPd,κ) has a solution for every d > 0, k and κ with κ ≥ k.

2. The solution of (MPd,κ) provides a lower bound for (RPd).

3. min(MPd,κ) ր inf(RPd) when κ → ∞.

4. When (u∗, m∗) solves (MPd,κ) and there exists η∗ ∈ P ∗
d Y p

H(Ω; Rn) such that

m∗
ι = η∗ • (1 ⊗ sι1

1 · · · sιn
n ) for |ι| := ι1 + · · · + ιn ≤ 2k, then η∗ solves (RPd).

Proof.

We use again some tools from convex optimization and convex analysis to un-

derstand the convex envelope of a coercive polynomial ϕ : R
n → R at the point

a = (a1, . . . , an). The coefficients of the polynomial ϕ(x) =
∑

2≤|ι|≤k cι1,...ιnxι1
1 . . . xιn

n

allow us to define the following semidefinite program:

15
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(SDPκ)






Minimize c · m :=
∑

2≤|ι|≤k

cι1,...ιnmι1,...ιn

subject to Hκ(m) � 0 and Lκ(m) � 0
with m0,...,0 = 1 and me1

= a1, . . . , men
= an.

Notice that κ ≥ k, in this way (SDPκ) is a sequence of convex programs indexed

by κ. Notice that we omit the linear part of ϕ as it does not affect the analysis

of the convex envelope of the polynomial ϕ. Since Hκ(m) � 0 and Lκ(m) � 0 are

necessary conditions for m to be a valid sequence of multidimensional moments of

a multidimensional measure supported in the n-dimensional ball B̺d
, the optimal

value of (SDPκ) is a lower bound for the value Cϕ(a). We have used here the

right hand of (ECP). If every program (SDPκ) has a finite optimal value, then

the optimal values of (SDPκ) define a nondecreasing sequence of lower bounds of

Cϕ(a). We will show that the optimal value of (SDPκ) converges to Cϕ(a) when

κ → ∞ by following J.B. Lasserre’s proposal for global optimization of polynomials

stated in the seminal paper [28].

Let La be the linear-afin function defining the supporting hiperplane of the con-

vex set Epi(Cϕ) ⊆ R
n+1 at the point (a, Cϕ(a)). See Remark (3.6). Given ε > 0,

we have ϕ(x)−La(x)+ε > 0 for every x ∈ B̺d
. Since the ball B̺d

is a semialgebraic

compact set, we can express the positive polynomial ϕ(x) − La(x) + ε in B̺d
as:

(QF) ϕ(x) − La(x) + ε =
J∑

j=1

q2
j (x) + (̺2

d − x2
1 − · · · − x2

n)
J ′∑

j′=1

q2
j′

where qj and qj′ are n-dimensional polynomials whose degrees can not be determined

in advance, i.e. they depend on ε. See [62]. If we take κ as the degree of the

polynomial at the right side of (QF), then the quadratic representation of (QF) gives

a feasible solution of the dual of the semidefinite program (SDPκ). See [28, 44].

The dual form of the semidefinite program (SDPκ) is

(D)






Minimize −γ0,...,0 − λ0,...,0 − 2a1γe1
− · · · − 2anγen

subject to 〈Γ, Aι1,...ιn〉κ + 〈Λ, Ãι1,...ιn〉κ−1 = cι1,...ιn

for every ι satisfying 2 ≤ |ι| ≤ κ , with
Hκ(γ) � 0 and Lκ(λ) � 0.

The primal semidefinite program (SDPκ) is strictly feasible as we can always

find a set of moments m, induced by a continuously distributed probability measure

in B̺d
whose first marginal moments are the values a1, . . . , an. See [14]. In this

16
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in convex optimization, feasible solutions of the dual program (D) provide lower

bounds for the primal program (SDPκ). So, as proposed in [28], we take a couple

of dual variables Γ and Λ from the coefficients of the polynomials qj and qj′ in

(QF). This is, Γ =
∑J

j=1 qj · qt
j and Λ =

∑J ′

j′=1 qj′ · qt
j′ which implies that matrices

Hκ(γ) � 0 and Lκ(λ) must be semidefinite positive. From the representation (QF)

of the positive polynomial ϕ(x) − La(x) + ε we can see that:

−γ0,...,0 − λ0,...,0 − 2a1γe1
− · · · − 2anγen

= La(a) − ε.

Therefore, the dual variables Γ and Λ determine the following lower bound for

(SDPκ):

−γ0,...,0 − λ0,...,0 − 2a1γe1
− · · · − 2anγen

= Cϕ(a) − ε.

As every optimal value in (SDPκ) is a lower bound for Cϕ(a), we have:

Cϕ(a) ≥ δ∗ε ≥ Cϕ(a) − ε

where δ∗ε is the optimal value of (SDPκ), which is finite because the primal program

(SDPκ) is strictly feasible.

The present analysis of the convex envelope of a n-dimensional polynomial proves

items 1-4 of Proposition (3.8) when applied on the coercive polynomial ϕ1 given in

(RPd) provided that ϕ0 is convex in u. For a good introduction to duality results

of semidefinite programming we refer to [4].

3.3 Remarks

Let us end this section with few remarks that outlines combination with various

advanced numerical strategies and various generalizations.

rem-SLP Remark 3.9 One can think about a linearization of the ϕ0-term in the relaxed

problem (RPd) and then, starting from some u0, consider the iterative process

based for k = 1, 2, ... on the solution (u
(k)
d , η

(k)
d ) to the problem

Minimize Ψ(u
(k−1)
d ; u, η) :=

∫

Ω

[
ϕ1 •η

]
(x) + [ϕ0]

′
u(x, u

(k−1)
d )(u − u

(k−1)
d )dx,

subject to [Id •η](x) = ∇u(x) for a.a. x ∈ Ω,

u ∈ W 1,p(Ω) element-wise affine on Td,

η ∈ P ∗
d Y p

H(Ω; Rn), u|∂Ω = uD, aqui

where u
(k−1)
d is known from the previous iteration. This SLP (=sequential lin-

ear programming) strategy was proposed in [3]. In some qualified cases (e.g. in the

17
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05 benchmark problem in Section 4 below), it converges by the Banach fixed-point

argument, see [3] for details. Here it may open a possibility, after applying the

methods of moments from Section 3, to use efficient semidefinite programming al-

gorithms with linear cost functional even if ϕ0(x, ·) is nonlinear and nonconvex.

For an SQP (=sequential quadratic programming) strategy, which allows for usage

of still relatively efficient semidefinite programming algorithms with quadratic cost

functional even if ϕ0(x, ·) is non-quadratic, see [37].

Remark 3.10 By solving relaxation (MPd,κ) with increasing values of κ, we even-

tually attain an exact solution or at least a good approximation of the exact moments

values. See [28]. By doing so, we obtain a set of parametrized multidimensional mo-

ments m∗(S) for every S ∈ Td. With this optimal moments we can calculate the

optimal Young measure on every S ∈ Td. This procedure exploits the marginal

algebraic moments and the convex hull properties of the non-convex potential ϕ1

theorem in convex analysis. See [44, 45] for further details of this implementation.

Remark 3.11 Some semidefinite programming algorithms yield the Lagrange mul-

tipliers λd,k,κ to the first constraint in (RPd,k,κ), i.e. (mS,ι)|ι|=1 = ∇u. They can be

used as a certain approximation of the multipliers λd in (2.10)–(2.11) and also the

multipliers that can determine by Weierstrass’ principle like (2.11) approximately

the support of a Young measure still discretized additionally by restricting it on

a convex combination of a finite number of Dirac measures supproted by a-priori

selected points of R
n. This is now called an active-set strategy algorithm, developed

originally in [11] and latter used e.g. in [3, 27, 36, 37, 68]. In this way, we would

get an upper estimate for min(RPd) which would complete the previously obtained

lower estimate min(MPd,k,κ).

Remark 3.12 Considering κ ≥ k and only the part of this solution, namely the

moments mS,ι with |ι| ≤ 2k, we can define ηκ ∈ H∗ by (3.3) where mι(x) = mS,ι

for x ∈ S ∈ Td. Unfortunately, except special cases as in Sect. 4, such ηκ need not

belong to
◦

YHk

p

(Ω; Rn) even in a limit for κ → ∞, contrary to the one-dimensional

case.

non-add Remark 3.13 In principle, in contrast to the additively coupled problem (P), we

could consider more general problems involving the generally coupled functional

Φ(u) :=
∫
Ω

ϕ(x, u(x),∇u(x))dx. Our results allow relatively easily for an exten-

sion to the case ϕ(x, u, s) =
∑

|ι|≤2k gι(x, u(x))sι1
1 · · · sιn

n . Then the ϕ0-term in

(MPd,k) and (MPd,k,κ) would be out but the coefficients φi,ι and φS,ι would depend

on u, which would turn (MPd,k) and (MPd,k,κ) into general nonconvex positive-

semidefinite mathematical programs.

18
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sect-benchmark

We show effectiveness of the proposed approach on a benchmark problem used al-

ready in [3, 37], namely the so-called Tartar’s broken-extremal example [54] modified

for the two-dimensional case like in [8, Sect.8]. To be more specific, let us consider

the square Ω := (0, K)n with n = 2 with the side K > 0 and, for almost all x ∈ Ω,

all s ∈ R
2, and all u ∈ R,

ϕ1(x, s) := |s − a|2|s + a|2, (4.1a) F

ϕ0(x, u) :=
(
u − g(a · x)

)2
with (4.1b) G

g(ξ) := − 3

128
(ξ − ξb)

5 − 1

3
(ξ − ξb)

3, (4.1c) g

for a = (cos φ, sinφ) with φ = π/6 and for ξb = 1/2. Note that (4.1a) (when shifted

by a constant) fits with (2.6a) for p = 4 and that ϕ1(x, ·) ∈ Π4(R
2), hence Section 3

applies for k = 2 = n; note that ϕ1(x, s) from (4.1a) is indeed a polynomial of the

4th order in terms of s = (s1, s2):

ϕ1(x, s1, s2) = s4
1 + s4

2 + 2s2
1s

2
2 − s2

1 + s2
2 − 2

√
3s1s2 + 1. (4.2)

Then according to (cf. [54]), the relaxed problem (RP ) has the unique solutionexact-sln

u(x) =





g(a · x) for a · x ∈ (0, ξb),

(a · x − ξb)
3

24
+ (a · x − ξb) for a · x ∈ (ξb,

√
2),

(4.3a)

νx =






1 − a · ∇u(x)

2
δ−a +

1 + a · ∇u(x)

2
δa for a · x ∈ (0, ξb),

δ∇u(x) for a · x ∈ (ξb,
√

2),
(4.3b)

provided we choose the boundary data uD := u|∂Ω with u just from (4.3a).

We use a regular triangulation Td for the finite element mesh shown in figure 1.

We have implemented the convex mathematical program corresponding to the

optimization problem (MPd,κ) defined in (u, m) variables, where we represent the

admissible function u by using a finite element linear interpolation basis, defined by

the finite element mesh shown in 1. With the optimal vectors m∗ so obtained, we first

check either if they actually represent the algebraic moments of a two dimensional

probability measure or not. If not we increase κ and try again. For this case we

have stopped in κ = 3. Usually, for coercive polynomials, we obtain valid set of

moments in a few steps, just taking κ a bit greater than the degree of ϕ1.

Afterwards we have obtained a set of bi-dimensional moments, we use the mar-

ginal moments on the axis x and y to construct the probability measure that they

represent. We must notice that this procedure is not possible in general cases, we
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Figure 1: Finite element mesh Fig5

success here because we obtain moments which represent the probability measures

defining the convex hull of the non convex potential ϕ1. This is an interesting ap-

plication of Caratheosory’s theorem. See [44, 45] for a clearer description of the

algorithms that we use to calculate the optimal Young measure from the optimal

moments obtained in (MPd,κ).

Numerical results are shown in Table 1. Beside the number of every mesh-

element, we show the optimal Young measure by specifying two probabilities and

two bi-dimensional supports. Thus, in the heading of Table 1, el stands for element

number, pr stands for probability and sx1 stands for the x-coordinate of the sup-

porting point corresponding to the probability pr1. Now the reader can easily grasp

the meaning of all the items into the heading line of Table 1.

The optimal surface u∗ shown in 2, has been calculated by using the correspond-

ing coefficients of a first-order spline basis, defined over the the finite-element mesh

shown in 1. Calculations have been done by implementing the model in Matlab

code, where optimization routines have been linked to an Ampl interface, see [45]

for a deeper description of all the minor details of this implementation.
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Figure 2: Optimal u∗ based in the finite element mesh of 1. Fig4

5 Conclusions

In this paper we have shown the mathematical analysis of variational problems given

in the general way (P) where the potential ϕ1 can be expressed as a non-linear, non-

convex multidimensional polynomial in the gradient of the admissible function u.

We also propose a very specific numerical method based in convex optimization to

find explicit generalized solutions defined in Young measures. This approach is very

enlightening for everybody engaged with models in non-linear elasticity and other

branches of mathematical physics implied with non-linear variational problems. A

good deal of research follows now, to exploit numerically the methods and techniques

proposed in this work.
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Figure 3: Optimal bi-dimensional parametrized measures (continued)
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matache [38] A.-M. Mataché, T. Roub́ıček, C. Schwab: Higher-order convex approximations
of Young measures in optimal control. Adv. in Comput. Math., 19, (2003), 73–97.

meziat-1 [39] J.Egozcue, R. J. Meziat and P. Pedregal: From a non-linear non-convex for-
mulation to a linear convex formulation of non-convex variational problems, Journal
of Applied Mathematics and Optimization, 47, (2003), 27–44.

meziat-2 [40] R. J. Meziat: Analysis of Two Dimensional Nonconvex Variational Problems, Opti-
mization and Control with Applications, Liqun Qi, Koklay Teo, Xiaoqi Yang, editors,
Springer Series on Applied Optimization, 96, (2005), 393–406.

meziat-3 [41] R. J. Meziat, J. Egozcue and P. Pedregal: The method of moments for non-
convex variational problems, Advances in Convex Analysis and Global Optimization,
P. Pardalos and N. Hadjisavvas editors, Kluwer Series on Applied Optimization, 54,
(2001), 371–382.

meziat-4 [42] R. Meziat: The Method of Moments in Global Optimization, J. of Math. Sci., 116,
(2003), 3303–3324.

meziat-5 [43] R. Meziat: Analysis of non convex polynomial programs by the method of mo-
ments,in Frontiers in Global Optimization, C. A. Floudas and P. M. Pardalos, ed-
itors, Springer Series on Nonconvex Optimization and its Applications, 74, (2003),
353–372.

meziat-patino-1 [44] R.J. Meziat, D. Patiño: Analysis of convex envelopes of polynomials and exact
relaxation of non-convex variational problems. preprint

meziat-patino-2 [45] R.J. Meziat, D. Patiño: Final report, research grant 1810, FPIT, (2005).

meziat-villalobos [46] R.J. Meziat, J. Villalobos: Analysis of microstructures and phase transition
phenomena in one-dimensional non-linear elasticity by convex optimization. accepted
in J. Structural and Multidisciplinary Optimization., (2006).

Milyutin [47] A.A. Milyutin and N.P. Osmolovskii: Calculus of Variations and Optimal Con-
trol, Transactions of Mathematical Monographs, AMS, 180, (1998).

Mordukhovic [48] B.S. Mordukhovich: Existence theorems in non-convex optimal control, Calculus
of Variations and Optimal Control, Technion, Chapman and Hall, (1988).
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