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1 Introduction

Nonconvex optimization problems often lack any solution because of fast oscillations
of minimizing sequences that eventually break lower semicontinuity with respect to
a weak convergence, cf. [69] and references therein for a survey on scalar variational
problems which will be the first concern in this paper. Therefore, a relaxation is



urgent to solve such problems in a suitably generalized sense. The most general
way of relaxation is certainly a suitable continuous extension, using also a suitable
linear-space structure not necessarily completely coherent with the linear structure
occurring in the formulation of the original problem. Thus extended, (this is called a
relazation), nonconvex problems then may get a convex structure even if the original
problem does not have any. For a large class of problems, a so-called generalized
Young functionals (representing a generalization of conventional Young measures,
cf. e.g. [65]) represent a suitable tool.

The relaxed problems can be discretized by a theory of convex approximation of
the set of the generalized Young functionals developed recently in [63, 64, 65|, see
also [38, 55, 56] or a survey paper [67]. Thus the relaxed problem can directly be
implemented on computer, without approximating the original non-relaxed problem,;
cf. [11, 26, 27, 36, 49, 50, 53, 54, 65, 68] for this approach. If the (additively coupled,
cf. e.g. (B) below) problem is linear in a lower-order term (i.e. po(z,-) in (P) is
linear), such approach leads to a linear-programming problem and was shown very
efficient in [3]. In the quadratic case, it naturally leads to a quadratic-programming
problem, which is a considerably less efficient but still possible approach if the
dimensionality is not too high, cf. [11, 36, 38, 68]. For non-quadratic case, one can
still consider various iterative schemes, see Remark 3.9 below.

All the above mentioned references use conventional Young measures and treat
them numerically in various more or less sophisticated ways. However, if the partic-
ular problem involves only a finite number of nonlinearities, it suffices to consider
only moments of these Young measures with respect to these nonlinearities. This is
the general idea of coarse conver compatifications as thoroughly exposed in [65]. In
general, it is not easy to characterize explicitly such convex compactifications how-
ever. The goal of this paper is to exploit this alternative coarse-compactification
approach in a particular case where the involved nonlinearities are polynomials. We
show the success of this approach on a concrete problem of scalar multidimensional
variational calculus with an additively coupled integral functional:

Minimize — ®(u) := /ngl(x, Vu(z)) + po(z, u(x)) dz,

subject to  uw e W(Q), ul|gq = up,

(B)

where 2 C R" is a bounded domain with Lipschitz boundary 02 and the boundary
condition up € W=1/PP(9Q) given; for more general problems see Remark 3.13
below. This paper formalizes ideas introduced in [39, 40, 41, 44, 45, 46] where
authors use projections of Young measures onto finite dimensional convex bodies,
in order to explicitly calculate the generalized solution of non-convex variational
problems in Young measures.



The outline and the main contributions of this paper read as follows: In Section 2
we introduce the relaxation theory for the nonconvex variational problems (3) and
an approximation by finite-element method. Section 3 is devoted to problems with
polynomial nonlinearities and we also present there an explicit characterization of
generalized Young functionals. In Section 4 we report on the performance of our
algorithm applied to a benchmark model problem.

2 Relaxation by convex compactifications and its
approximations

In this section we define the employed relaxation of (J3) which is a continuous exten-
sion of () in terms of generalized Young functionals as suggested in [65, Chap.5].
We briefly state a construction of suitable envelopes of the Lebesgue space involved
in (PB), formulate the relaxed problem (RYP) and the main results concerning the
connections between () and (RP ), as well as its approximation.

2.1 Convex local compactifications of L’-spaces

Following [65, 66], we will briefly present a fairly universal construction of locally
compact envelopes of the Lebesgue LP-spaces that are also convex in a natural linear
space and allow for a continuous and affine extension of Nemytskii mappings. We
assumed 2 C R™ a bounded Lipschitz domain (here in Sect. 2.1, in fact, the Lipschitz
property is not needed), and let us consider the Lebesgue space LP(Q;R™) = {u :
Q — R™ measurable; [, |u(x)[Pdz < +00}. We define a normed linear space

Car?(Q; R™) := {h OxR™ - R;,

h(-, s) measurable, h(z,-) continuous,

Jae LY(Q), beR: |h(z,s)| < alz) + b|s|p} (2.1)
of Carathéodory’s “test integrands”, and dote it with the norm

The essential trick is to consider a sufficiently large (but preferably still separable)
linear subspace H C Car?(€2;R™), to define the embedding

i P R™) — H v (h — / h(x,u(x))dx), (2.3)
Q
and eventually to put
YH(€;R™) := the weak™ closure of iy (LP(Q;R™)). (2.4)
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One can show that Y7, (€; R™) is always convex in H*. Assuming, rather for simplic-
ity, that H contains at least one coercive integrand, i.e. H 5 hy with hg(z, s) > |s|?,
then Y7 (;R™) is a convex locally compact hull of LP(Q;R™) and LP(;R™) it-
self is embedded into it (norm,weak*)-continuously. Moreover, if H is rich enough
(cf. [65, 66] for details), then this embeddeding ij is even homeomorphical. If H is
separable, then Y7 (Q; R™) is locally sequentially compact. Thus Y} (€2; R™) may be
considered as indeed a very natural envelope of LP(£2; R™).

Moreover, let us define hen as a Borel measure on Q by [, g(z)[hen](dz) =
(hen,g) = (n,gh) where [gh](x,s) = g(x)h(z,s) and g € C(2), where Q denotes
the closure of Q. Here we need that H is so-called C(Q)-invariant in the sense that
gh € H whenever g € C(Q) and h € H.

Further, we say that n € Y} (€;R™) is p-nonconcentrating if there is a sequence
{ug tren such that n = w*-limy_ o ig(ux) and {|ug|’; k& € N} is weakly relatively
compact in L'(Q). Let us denote the set of all such n’s by }C}}}(Q; R™).

If H is separable, any n € XO/II}(Q; R™) has a LP-Young measure representation v
in the sense that there is a weakly® measurable mapping = — v,, v, a probablity
measure on R™, such that z — |s[Pr,(ds) belongs to L*(2) and

Vh e H : (n,h) = /Q/m h(z,s) v,(ds)dz, (2.5)

see [65, Proposition 3.4.15]. It holds that [neh](z) = [, h(z,s)v,(ds) for a.a. x €
Q.

2.2 Relaxation of (B)

We use the construction from Section 2.1 for m = n. We will assume that ¢ :
QO xR* = Rand ¢ : {2 xR — R are Carathéodory functions satisfying, for almost
all x € 2, all s € R, and all u € R,

alsl” < @i, s) < o1+ [s]), (2.6a)

lo(z,u)| < a(x) + csluld, (2.6b)

where p > 1, ¢1,¢9,¢c3 > 0, a € LYQ), and 1 < ¢ < pn/(n —p) if p < n and
1 < g < ooif p>n. Then we will consider the already announced relaxed problem
in the form:
Minimize — ®(u,n) := / (1 0n] (@) + @o(z, u(z))dz,
Q
(RB) subject to  [Iden|(x) = Vu(x) for a.a. z €,
ueWhr(Q), neYLHRY), ulspg = up,
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where Id(z,s) := s; here we have to assume Id € H™. The following assertion,
which shows that (R93) is indeed a proper relaxation of (3), is based on results by
Kinderlehrer and Pedregal [23, 57], therein we have:

Proposition 2.1 (See [65, Propositions 5.2.1 and 5.2.6].) Let (2.6) hold, p > 1, H

be C(Q)-invariant, v, € H, and Id € H™. Then:

(i)  (RP) admits a solution.

(ii) inf(P) = min(RP).

(iii) The embedding ey : WIP(Q) — WHP(Q) x YE(QR™) v — (v,ig(Vv)) of
any minimizing sequence for (B) has a weakly convergent subsequence whose
(weakx weak® ) limit is a solution to (RP ).

(iv) Each solution to (RP) is p-nonconcentrating and is the (weakxweak") limit
of some minimizing sequence for () embedded via ey

The consequence of Proposition 2.1(iv) is that we can replace Y7 (€;R") by
Yh (€;R™) with an equal effect.

2.3 Finite-element discretization in space

As to the discretisation of {2, we suppose that €2 is a polyhedral and we also consider,
for a discretization mesh parameter d > 0 (ranging a countable set having 0 as its
accumulation point), a triangulation 7; of {2 composed from simplexes S € 7; such
that maxger, diam(S) < d and 73, C 7y, for d; > dy > 0, i.e. we consider nested
triangulations refining everywhere on 2 when d ™\, 0. Then we define P; by

! /h(g, s)d¢ if reSel,. (2.7)
S

[Pih](x,s) = E—
Requiring P; : H — H, we must consider such H which contains also discontinuous
element-wise constant integrands. As we consider a sequence of triangulations 7y, it
is still possible to take H separable in the norm (2.2). In this norm, one can see that
| Pih || carr(@rmy < ||h]|care@;rmy and Pyo Py = Py, so that Py : H — H is a continuous
projector. By [65, Proposition 3.5.9], it holds that P;Y}(Q;R™) C Y;(Q;R™). By
(65, Proposition 3.5.2(iv)], we have (J,., P; Y} (€Q; R") weakly™ dense in Y};(€2;R™).
This suggests to approximate (89) by restricting it on a convex subset P;Y7(; R™)
instead of Y7 (€2;R™). Since any n € P;Y}(€;R") is element-wise constant, holding
the constraint Id enn = Vu, the underlying u will then be automatically element-wise
affine. By this way we come to the following approximate relazed problem:

Minimize — ®(u,n) := /Q (1 00](x) + ¢o(z, u(z)) dz,
(R, subject to  [Iden|(z) = Vu(z) for a.a. x €,
u € WP(Q) element-wise affine on 7y,
n e PYLHQ;R™),  ulsg = up.
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Let us denote

Gy = U{geL‘”(Q); VSeTy: gls e C(S)} (2.8)
d>0
where g|s € C(S) means existence of a continuous extension on S of the restriction
9ls-

Proposition 2.2 (See [65, Proposition 5.5.1].) Let H be separable, G-invariant,

and satisfy G @V C H C cl(G® V) for some linear space G C L>(Q2) containing

Gy and for some linear space V' of continuous functions on R™ of at most p-growth,

where the closure “cl” refers to the norm (2.2) and “®” means the usual tensorial

products, i.e. for functions [g®@v](x,s) = g(x)v(s) and for spaces GRV is the linear

span of {g®@v; g € G, v € V}. Then:

(i) A solution (ug,nq) to (RP,) always exists.

(ii)  Moreover, limy_o min(RP,) = min(RP) and there always ezists a subsequence
of d; — 0 such that (ug,,ng,) (weakx weak*)-converges in WP(Q) x H*. More-
over, the limit of any such a subsequence solves (RY).

Remark 2.3 As P, is a projector, it holds that
[ eremds = Guon) = (Pins ) = (PiPin 1)
Q

= (Pin, Pyp1) = (N4, Pasp1) = /(Pdsol)-nd dx (2.9)
Q

for any ny € P;YL(Q;R™), i.e. ng = Pjn for some n € Y;(€;R™), and therefore we
can equally consider ¢; in (R3,) replaced by its element-wise constant interpolant
Pyp1. Also, by [65, Proposition 5.5.1(ii)], P;Y/(€;R"™) in (RP,) can be replaced
by Pj}c}ﬁ (€;R™) with an equal effect.

In the following remark, we focus on the Weierstrass Maximum Principle as a nec-
essary condition for general variational problems.

Remark 2.4 Fixing d > 0, the neccessary optimality conditions for (J8,) which
any solution (ug,nq) to (RYP,) must satisfy are the existence of a vector field Ay €
L>(; R™) element-wise constant satisfying, roughly speaking, one half of the Euler-
Lagrange equation divag = [pol,,(x, uq) after discretized by finite elements, i.e.

84,00 (l’, ud)

5 zdx =0, (2.10)

V2 e Wh(Q) element-wise affine on 7 : /)\d -Vz+
Q

and the Weierstrass maximum principle in the sense

(A ®1d — Pypr] emg = max <)\d(x) - s — [Pypr1)(z, s)) for a.a. z € Q, (2.11)
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see [65, Sect.5.3] or [11]. The vector field A\; is, in fact, the Lagrange multi-
plier to the constraint Iden = Vu in (RP,). If wo(z,-) is convex, then these
optimality conditions are also sufficient. Indeed, formula (2.11) suggests the
use of a relaxation in probability measures of the global optimization problem:
maxgern (Ag(2) - s — [Pyp1](z, s)). This is just the approach presented in [28, 42, 43]
for global optimization of polynomials.

3 Polynomial nonlinearities — method of moments

The definition (2.4) is very implicit. To implement the discretized relaxed prob-
lem on a computer, in view of Proposition 2.1(iv), we definitely need an explicit
characterization of elements from Y} (€;R"), or at least from Pdioffl(Q;R"), and
possibly a further discretization of P;YF(£2;R™) if it is still infinite-dimensional,
cf. [11, 38, 64, 65, 67]. Now we will focus on the case where all integrands from H
are polynomials with order at most 2k, k € N;i.e. h(z,-) € g, (R™) where o, (R™) is
the family of all n-dimensional polynomials with degree 2k at the most. The decisive
advantage of such choice is that P;H is finite-dimensional and then P;Y7(Q2;R™) is
automatically homeomorphic to a convex subset of a finite-dimensional Euclidean
space; notice the constraints mgy,... o = 1 for S € 73 in (MP,;. ) below. Therefore,
in this case, no further discretization of P;YF(£2; R™) is needed.
We assume k£ € N given and choose p = 2k. Further choose
2%k—1
H=H,:= ) L'"(Q) @ I(R") + Gy @ Iy, (R") (3.1)
=1
where G is from (2.8). Note that Hy is a linear subspace of Car?(€2; R™) and, by the
arguments presented in [66], it can be proved that it is separable. Hence it satisfies
the assumptions of Proposition 2.2 with G = G and V' = Il (R").
In this special case, every 1 can be represented by its moments

M= ne(1@ s - st0) (3.2)
where ¢ = (t1,--+,t,) is the multi-index of non-negative integers such that
e ==+ -4+ 1, < 2k, Namely, for any h € Hy with Hj from (3.1),

Le. h =37 cop g.(2)sy -+ s with uniquely determined g, € Lp/e=lD (), it holds
that

3 /Q o (z)m, (z) da. (3.3)

<2k

<777h> = Z <7779L®SL11"'S;R> =
|

[ <2k
Further, denoting m = (m,)},<or, we define the matrix Hj(m) as

Hy(m) :== (3.4)

(mL1+ul,... ,Ln-l-L;L)OSLlJrL/lSk,... 0<tp+1, <k
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and following current literature on global optimization of polynomials [28, 29, 30,
31, 32, 33, 34, 35, 58, 59, 60, 61] we define the localizing matrix Li(m) as

2
(QdmL1+L/17"'7Ln+L4L T 2, e, T T leJ”/p"'an+L%+2)0§L1+L’1§k—1,~~,OgLn+L;§k—£3'5)

It is well known that a probability measure 1 on R” induces a moments sequence
m, = [ga s{" - sirdp(ds) which always makes the matrix Hy(m) positive semidefi-
nite. The converse, i.e. existence of a probability measure p inducing a prescribed
sequence (m,)|,|<2r With Hy(m) = 0 and mg(z) = 1 as its moments, is unfortunately
not true even in n = 1 or even when Hy(m) > 0 and n > 1. The role of the localizing
matrix Lg(m) is revealed when we focus on the family of measures supported on the
n-dimensional ball B,, := {s € R™; s + -+ + s2 < ¢2}. Thus, a probability mea-
sure p on B,, induces a moments sequence m, = | By, st -+ - stndp(ds) which makes
the localizing matrix Ly (m) positive semidefinite. Even considering the localizing
matrix Ly(m), the converse statement is no longer true again, however something
useful can be done by applying recent characterizations of positive polynomials on
compact semialgebraic sets like the ball B,,. We will back on this issue below when
we face the multidimensional case. See [28, 29, 34, 35, 58, 59, 60, 61].

3.1 The one-dimensional case

In the one-dimensional case, the matrix Hy(m) = (M4, )o<,+v <k takes the form of a
Hankel matrix [mb+u]ﬁu:1- This one-dimensional case is particularly simple because
the closure of the cone of moments of positive measures in the real line, i.e.

M ={m e R** . m = /(1,t, ., t*)du(t)  for a positive measure p in R}
R

(3.6)
is precisely the cone of vectors m € R?***! which make Hy(m) positive semidefinite.
Although not every vector m € R?**! satisfying this condition is a vector of mo-
ments, in the one dimensional case the coercivity of ¢ avoids any difficulty. The
following lemma from [39, 40, 41] clarifies this point.

Lemma 3.1 Let o(t) = Zfﬁo c,t' be a one dimensional, coercive polynomial (i.e.
caor > 0). Therefore, any solution m* of the semidefinite program:

2k
Minimize c~m::E c,m,

6@% =0
( ) subject to Hg(m) = 0

with my =1 and m; = a,



is composed of the algebraic moments of a measure p* satisfying the following ab-
stract optimization problem defined in measures:

Minimize (i, 1) ::/R@(t)du(t)

subject to [, tdu(t) = a
1€ P(R)

where P(R) stands for the family of all probability measures supported in the real

(AOFP)

line R. The converse is also true, i.e. when u* solves (AOP) its algebraic moments
solve (GDP).

On one hand, this fact certainly allows us to determine exact relaxations in the
one dimensional case. On the other hand, it also has an important geometrical
meaning in convex analysis. Since the polynomial ¢ is coercive in R, every point
on the graph of its convex envelope ¢. can be expressed as a convex combination
of points on the graph of ¢ itself. By applying classical Caratheodory’s theorem in
convex analysis we obtain the following formula:

(@, pe(a)) = M(ar, p(a1)) + Aa(ag, p(az)) (3.7)

where the coefficients \; represent a convex combination. It is remarkable that
every optimal measure for (AO9) comes from the geometrical representation in
(3.7). Thus, a probability measure i satisfies (AOP) if and only if it satisfies the
equation:

(@.eu(a) = [ (6 o0)dm() (38)
see [39, 40, 41, 42, 46]. From this observation we can see that
ﬁ - )\15a1 —+ )\25a2 (39)

is a solution of (AOP), where the coefficients \; and the points a;, all together,
satisfy (3.7). Thus, we can use a set of optimal values m* from the semidefinite
program (GDP) to determine the support and the weights of an optimal measures
1 solving (AOP). These facts can be used to prove the following result, later they
will also be useful when applied into the multidimensional setting.

Proposition 3.2 Assume that pq(z,t) = Zfio g.(z)t" is a coercive, one dimen-
sional polynomial in t, for almost every x € [0, 1] then

( 1 2k
Minimize  ®(m,u) = /0 O g (x)m,(z) + vo(u, z) }dx
(OCP) subject to mg(x) =1, u’@% =my(x)
Hy(m(z)) = 0 for every x € [0,1]
\ w(0) = up(0), u(l)=wup(1)

9
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is an exact relazation of (RYP ) in the one dimensional case, which has at least one
solution. Moreover, every solution m* of (OCP) can be traced back to a particular
optimal n* for the corresponding one dimensional case in the formulation (R ),
in the sense that m* is the vector function of the algebraic moments of the Young
measure n*. That is m; =n*e(l® s") for . =0,---,2k.

This result has been proved and exploited constructively in [6, 39, 40, 41, 42, 46].
Notice that coercivity of ¢; implies a finite, rather simple, support of the optimal
measures of (RYP). We would like to remark here, that in the one-dimensional
case the relaxation of (R ) takes the form of a convex optimal control problem as
(OCP), which must have at least a minimizer under coercivity assumptions. See
[13, 18, 47, 48, 51, 72].

An analogous assertion holds for piecewise constant 7’s from Pdf/gk(Q; R™). This
fact suggests to formulate (JR3,) in terms of moments. Let 7; be an equidistant par-
tition with d > 0 a mesh size. Then the approzimate problem in terms of moments

looks as:
( 1/d 2k 1
Minimize — ®(u,m) := Z ngmi,L + / wo(x,u(z))de,
i=1 =0 0
subject to  m;o =1, m;; =4u'(x) forz € ((i—-1)d,id),
(o, (-1

Hk(mz’,07 U 7mi,2n) =0 for all i = 17 T 1/d7
u € WHP(Q) element-wise affine on 7y,

X u(0) = up(0), u(l) =up(1),

where the coefficients g;, come from the expansion of the element-wise constant

integrand Py, i.e.

2%k
[Papr](z,s) = Zgws‘ for z € ((i—1)d,id). (3.10)

Thus we turned the problem (JR,) into a semidefinite programming problem. De-
pending whether og(x,-) is linear, convex quadratic, or more general, more or less
efficient computer codes are available for solving it, e.g. the primal-dual interior
point algorithm, generalized augmented-Lagrangian method [24], or a log-barrier
method, respectively. For this approach, see [39, 40, 41, 46] where the last method
has been applied.

From the analysis of the one dimensional case exposed above, the following equiv-
alence clearly follows:

Proposition 3.3 If n = 1, (2.6) requirements hold and @1 is a polynomial with
degree 2k, i.e. (3.10) holds, then the problem (RB,) with H from (3.1) is equivalent
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to (MP,) in the sense that:

(i)  min(RP,;) = min(IMP,), and

(i) (u*,n*) solves (RP,) if and only if (u*,m*) solves (IMP,), where optimal n*
is related to optimal m* through (3.2), which means here m} = n*e(1® s*) for
L =0, 2k.

It is worth to mention here, that we can use algebraic tools for constructing finite
supported measures from a finite set of their moments, so we can use the optimal
vectors m}, from (MP,) to estimate a 1 as a minimizer of (RP,). See [42, 43].

3.2 The multi-dimensional case

The Multidimensional Moment Problem is still an open problem in pure and ap-
plied mathematics see [1, 5, 12, 22, 25, 70]. Nonetheless, important progress has been
made in recent years as algebraists have been able to characterize positive polyno-
mials defined in compact semi-algebraic sets [14, 15, 16, 19, 21, 35, 71]. This result
has been applied to global optimization of polynomials and non-convex situations in
optimization theory, see [28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 42, 43, 46, 52, 58,
59, 60, 61]. We use this methodology here to transform (R9,) into a convex opti-
mization problem in which the Young-measures v, are represented as moments-like
vectorial functions my within a proper convex mathematical program. In particular
we will follow J.B. Lasserres’s approach on global optimization of polynomials given
in [28, 29, 30, 31, 32, 33] to describe the convex envelope of n-dimensional coercive
polynomials by semidefinite programming.

The case n > 1 is much more complicated because the characterization of ele-
ments 7 from ?II}(Q;R”) only can be attained in a limit sense, provided that the
supports of the parametrized measures in the Young measure representation of 7 lie
in a compact semi-algebraic set. Thus, we assume that every parametrized measure
v, is supported on the n-dimensional ball: B,, := {s € R"; s7 + -+ + s2 < g3}
where g, is chosen to convenience. Due to the uniform coercivity of ¢4, cf. (2.6a),
the maximum on the right-hand side of (2.11) can be achieved inside a ball B,,
for g4 sufficiently large. By proceeding in this way, we can apply recent results
on the characterization of multidimensional moments without changing the original
formulation of the problem.

It is enlightening for our approach to focus on the convex envelope of the in-
tegrand ¢q(z, Vu(x)) with respect to the gradient variables. Indeed, it has been
observed by other authors that this kind of convexification allows us to obtain an
exact convex relaxation of the original non-convex problem (). Thus, when we
consider the convex formulation:

11



Dacorogna

Minimize — ®.(u) := /QC'gol(x,Vu(:p)) + @o(z,u(z)) dz,

subject to  uw e WP(Q), ulsgq = up,

(CP)

we obtain an exact relaxation of (3) see [17, 20, 57, 65]. After a proper discretization
as described in Section 2, we must center our attention on the discretized convexified
problem:

Minimize — ®.(u) := /QCQpl(x, Vu(z)) + po(z, u(x)) dz,

subject to u € WHP(Q), element-wise affine on 7y, u|gq = up.

(€B,)

We will prove next that (€,) is also equivalent to (R3,) under proper coercivity
assumptions.

Proposition 3.4 (See [57].) By assuming the coercivity requirements on o1 given
in 2.6a, we have the following results:

1. Let u* be a solution for (€P). The couple (u*,n*) with n* € Y5 (4 R™) is a so-
lution of (RP) provided that Cipy(z, Vu*(z)) = [p1en*](z) and [Iden*](z) =
Vu*(z) for almost every x € Q.

2. Reciprocally, if (u*,n*) solves (RP), the function u* is a solution for (EP)
and they solve the equations Coy(z, Vu*(x)) = [p1en*](x) and [Iden*](z) =
Vu*(z) for almost every x € €Q.

Lemma 3.5 (See [17].) Given a n-dimensional polynomial ¢ : R™ — R satisfying
c1slP < p(s) < (1 4+ |s|P) for every s € R™, with p > 1 and positive constants c;
and ¢z, we can determine its convex envelope at a fixed point a € R™ as:

Minimize  {p, ) = /n o(s)dpu(s)

subject to  [5, sdu(s) = a
e PR

(€Cp) Cpla) =

where P(R™) is the family of all Borel regular, probability measures supported in R™.

Remark 3.6 At the boundary point (a, Cp(a)) there exists a supporting hiperplane
for the convex set Epi(C'y). Such hiperplane can be defined by a linear-afin function
L, : R" — R which satisfies L, < Cp < ¢ and L,(a) = ¢(a). Thus, we easily
characterize the optimal measures p* for (EE€P) as the set of probability measures

12



supported in F, = {s € R" : L,(s) = ¢(s)} satisfying a = [, sdu*(s). Hence,
we find that a necessary condition for p* to be optimal in (EE) is that p* be
supported in {s € R" : Cp(s) = ¢(s)}. Reader should notice why this condition is
not sufficient.

Proposition 3.7 By assuming the coercivity requirements on 1 given in 2.6a, the
discrete problem (€PB,) is equivalent to (RP,) in the following sense:

1. Let u} be a solution for (EP,). The couple (ul,n;) with n* € P;YH(;R™)
is a solution of (RP,) provided that Cioy(z, Vui(z)) = [p1eni](z) and
[Ideni](x) = Vui(x) for every S € 1.

2. Reciprocally, if (u},n}) solves (RP,), the function u) is a solution for (EB,)
and they solve the equations:

Copr(z, Vug(x)) = [premg](z)  and  [deni](z) = Vug(x)  (3.11)

for every S € 1;. Notice that equations 3.11 are satisfied in an element wise
way, being constant inside every triangle S € 1y.

Proof.

1. Let (ug,nmq) be an admissible solution for the relaxed problem (R3,), then
[Id eng)(x) = Vugy(z) for every S € 7. Since u}; is optimal for (€3,), we have:

/QCgol(x, Vug(x)) + po(z, ug(z)) de > /QCQpl(x, Vuy(x)) + polz, uy(x)) df3.12)

By using Lemma 3.5, we can see that

/Q[wl-nd](x) + o(, ug(r)) do = /QC%(% Vug(x)) + ¢o(@, ua(z)) da(3.13)
and finally we have
/Q[wl-ﬁd](x)vao(%ud(ﬂc)) dz > /Q[%'??Z](«T) +o(, ug(r)) do (3.14)

because of the assumptions on u* and n*. Thus, we have shown that (u}, n})
is optimal for the problem (R3,).

13



2. Let n7* be the Young measure induced by the convex envelope of ¢; according
to Lemma 3.5, i.e.

Cor(z, Vuy(z)) = [preni’](x) and  [[deni](z) = Vuy(z)  (3.15)

for every S € T;. As (u},n)*) is admissible and (u}, 7)) is optimal for the
problem (RY3,), we have

/ o) (@) + (e, w(e)) do > / o1 o 7)(@) + ol wi(x)) dr (3.16)
Q Q
then

/Q Copn(z, V() da = / o1 o] (2)dz > / o1 o) (2)da > / Copn(z, V() d3.17)

Hence,
/Q[(pl ony|(z)dz = /QC’gpl(x, Vui(x))dz. (3.18)
By applying Lemma 3.5 again, we can claim that
Coor(x, Vug(x)) < [y eng](x) (3.19)

for every S € 7;. But the integrals in 3.18 can be expressed as a finite sum on
the members of 7;. Thus, we have:

Z /S[@rng](@df: Z /Sctpl(x, Vuy(x))dz. (3.20)

Sel, SeTy

Therefore, we can conclude that:
[o1 emal(x) = Cipr(, Vug(x)) = @1 e157](z) (3.21)
for every S € 7;. In this way we can see that n;* = n). Herein that
Coi(2, Vuy(z)) = [preng](z)  and  [Idenjl(z) = Vug(z)  (3.22)

for every S € 7;. To see that u}, is optimal for the convexified problem (€33,),
we take an admissible uy for (€3,) and we define 7, as the Young measure
induced by the convex envelope of ¢, according to Lemma 3.5. Therefore, we
have:

/QCgol(x, Vua(z)) + po(z, ug(x)) do
- / (o1 o 14)(2) + go(e, ua(z)) de
@ (3.23)
> / (o1 enl)(@) + polz, ul(z)) dz
Q

~ [ G, Tugfa)) + gale o) d.

In this way we conclude that v is optimal for (€,).
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From Proposition 3.7, it is clear the role of the convex envelope of the polynomial
¢1 into the relaxed formulation (RY,;). From Lemma 3.5, it is also clear that
the convex envelope of a multidimensional polynomial ¢; can be described by a
particular optimization problem defined in probability measures. Thus, we can apply
the moments technique to the relaxed formulation (R93,), taking into account that
we must obtain at last the convex envelope of the polynomial ¢; to be certain that
we are in presence of an exact relaxation of the original problem. See [44]. The
following result supports such approach.

Proposition 3.8 Consider the convex, relaxed and discretized problem:

e

k
Minimize &D(u,m) = Z Z¢S,Lms,b +/@0($au($))d$,
Q

S€Ty 1=0
subject to mg,, = &: on Se€Ty, i=1,---,n,
(W‘Bdﬁ) mesp..0 = Z1,
H,. ({ms, }<2x) = 0, for all S€Ty,

Lli ({mS,L}|L‘S2(I€71)) = 07
u € WHP(Q) element-wise affine of Ty, ulsq = up,

\

where e; = (0,---,0,1,0,---,0) € R™ is the vector with 1 on the i-th position and
where, similarly as in (MB,,.), the coefficients ¢s, come from the expansion of
the element-wise constant integrand Pypq, i.e. [Pypr](x,s) = Zf:o G557 - - sk for
re S eTd; We claim that:

1. (MP,,.) has a solution for every d >0, k and k with k > k.
2. The solution of (IMP,,.) provides a lower bound for (RP,).
3. min(IMP, ) inf(RP,) when k — oo.

4. When (u*,m*) solves (MP, ) and there exists n* € P;Y[ (4 R™) such that
mi=n*e(1® sy --st) for || :=11+ -+ 1, <2k, then n* solves (RP,).

Proof.
We use again some tools from convex optimization and convex analysis to un-

derstand the convex envelope of a coercive polynomial ¢ : R® — R at the point

a = (ai,...,an). The coefficients of the polynomial ¢(z) = > 75|, 1<t Cur,en @t - - - 237

allow us to define the following semidefinite program:
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Minimize c¢-m:= E Coryootn Myt

2<|e|<k
(6D%,.) subject to  Hy(m) = 0 and Ly (m) = 0

with mg__ o =1and me, = aq,...,me

-----

Notice that k > k, in this way (6D9,,) is a sequence of convex programs indexed
by k. Notice that we omit the linear part of ¢ as it does not affect the analysis
of the convex envelope of the polynomial ¢. Since H,(m) = 0 and L,(m) > 0 are
necessary conditions for m to be a valid sequence of multidimensional moments of
a multidimensional measure supported in the n-dimensional ball B,,, the optimal
value of (6D%,.) is a lower bound for the value Cp(a). We have used here the
right hand of (EEP). If every program (GO, ) has a finite optimal value, then
the optimal values of (6D,) define a nondecreasing sequence of lower bounds of
Cy(a). We will show that the optimal value of (GD9,.) converges to C'p(a) when
k — oo by following J.B. Lasserre’s proposal for global optimization of polynomials
stated in the seminal paper [28].

Let L, be the linear-afin function defining the supporting hiperplane of the con-
vex set Epi(Cp) C R at the point (a, Cp(a)). See Remark (3.6). Given € > 0,
we have p(z) — Ly (x)+e > 0 for every x € B,,. Since the ball B, is a semialgebraic
compact set, we can express the positive polynomial p(z) — La(x) + ¢ in B,, as:

(2F) () —La(:v)+€=Zq]2(x)+(Q§—xf—---—xi)Zq}

where ¢; and g;» are n-dimensional polynomials whose degrees can not be determined

in advance, i.e. they depend on . See [62]. If we take x as the degree of the

polynomial at the right side of (QF), then the quadratic representation of (QF) gives

a feasible solution of the dual of the semidefinite program (S®9, ). See [28, 44].
The dual form of the semidefinite program (S®%,.) is

Minimize =700 — Ao,...0 — 20417, — = — 20nYe,,

(@) subject to (I, Ay, i )w + (A A i )ec1 = Copas
for every ¢ satisfying 2 < || <k , with
H,(y) = 0 and L, (X) > 0.

The primal semidefinite program (GD%B,) is strictly feasible as we can always
find a set of moments m, induced by a continuously distributed probability measure
in B,, whose first marginal moments are the values ai,...,a,. See [14]. In this
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way the moments m define positive definite matrices H,(m) and L,(m). As usual
in convex optimization, feasible solutions of the dual program (©) provide lower
bounds for the primal program (&GD%B,.). So, as proposed in [28], we take a couple
of dual variables I' and A from the coefficients of the polynomials ¢; and ¢; in
(QF). Thisis, T = ijl ;- q5 and A = Zj’,:l qj - ¢j which implies that matrices
H,(y) = 0 and L,(\) must be semidefinite positive. From the representation (QF)
of the positive polynomial ¢(x) — L,(x) 4+ € we can see that:

—70,...,0 — )\0,...,0 —2a1%e, =+ — 2007, = La(a) - &

Therefore, the dual variables I' and A determine the following lower bound for

(6DP,):

—%0,...0 = A0,...0 — 201Ye, — - — 2ap%e, = Cp(a) — e.

As every optimal value in (6D9,) is a lower bound for C'p(a), we have:
Cpla) > 67 > Cp(a) — ¢

where 67 is the optimal value of (GD,.), which is finite because the primal program
(GDP,,) is strictly feasible.

The present analysis of the convex envelope of a n-dimensional polynomial proves
items 1-4 of Proposition (3.8) when applied on the coercive polynomial ¢; given in
(RPB,) provided that ¢y is convex in u. For a good introduction to duality results
of semidefinite programming we refer to [4]. m

3.3 Remarks

Let us end this section with few remarks that outlines combination with various
advanced numerical strategies and various generalizations.

Remark 3.9 One can think about a linearization of the @pg-term in the relaxed

0

problem (RP,) and then, starting from some u’, consider the iterative process

based for k = 1,2, ... on the solution (uék), nc(lk)) to the problem

Minimize \I/(uglk_l); u,m) = / [@1 .n] (x) + o], (, u&k_l))(u — u&k_l))dx,

Q
subject to  [Iden|(z) = Vu(z) for a.a. x €,
u € WHP(Q) element-wise affine on 7y,

n€ PiYg(R"),  ulon = UD,

(1) is known from the previous iteration. This SLP (=sequential lin-

where u
ear programming) strategy was proposed in [3]. In some qualified cases (e.g. in the
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benchmark problem in Section 4 below), it converges by the Banach fixed-point
argument, see [3] for details. Here it may open a possibility, after applying the
methods of moments from Section 3, to use efficient semidefinite programming al-
gorithms with linear cost functional even if ¢y(x,-) is nonlinear and nonconvex.
For an SQP (=sequential quadratic programming) strategy, which allows for usage
of still relatively efficient semidefinite programming algorithms with quadratic cost
functional even if yg(z, ) is non-quadratic, see [37].

Remark 3.10 By solving relaxation (9B, ) with increasing values of x, we even-
tually attain an exact solution or at least a good approximation of the exact moments
values. See [28]. By doing so, we obtain a set of parametrized multidimensional mo-
ments m*(S) for every S € 7;. With this optimal moments we can calculate the
optimal Young measure on every S € 7;. This procedure exploits the marginal
algebraic moments and the convex hull properties of the non-convex potential
theorem in convex analysis. See [44, 45] for further details of this implementation.

Remark 3.11 Some semidefinite programming algorithms yield the Lagrange mul-
tipliers Ag .. to the first constraint in (RP,;.), i-e. (Ms,)j=1 = Vu. They can be
used as a certain approximation of the multipliers A; in (2.10)—(2.11) and also the
multipliers that can determine by Weierstrass’ principle like (2.11) approximately
the support of a Young measure still discretized additionally by restricting it on
a convex combination of a finite number of Dirac measures supproted by a-priori
selected points of R™. This is now called an active-set strategy algorithm, developed
originally in [11] and latter used e.g. in [3, 27, 36, 37, 68]. In this way, we would
get an upper estimate for min(R3,;) which would complete the previously obtained
lower estimate min(9P, ;. ).

Remark 3.12 Considering « > k and only the part of this solution, namely the
moments mg, with [¢| < 2k, we can define 7, € H* by (3.3) where m,(x) = mg,
for x € S € 7;. Unfortunately, except special cases as in Sect. 4, such 7, need not
belong to }C}f}k(ﬂ; R™) even in a limit for kK — oo, contrary to the one-dimensional
case.

Remark 3.13 In principle, in contrast to the additively coupled problem (%), we
could consider more general problems involving the generally coupled functional
D(u) = [, ¢z, u(x), Vu(z))dz. Our results allow relatively easily for an exten-
sion to the case ¢(z,u,s) = >, o gu(z, u(z))st -+ sy, Then the po-term in
(OB, ;) and (MR, ;. ,.) would be out but the coefficients ¢;, and ¢g, would depend
on u, which would turn (9P, ,) and (MP,,.,.) into general nonconvex positive-

semidefinite mathematical programs.
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—benchmark

exact-sln

4 Illustrative two-dimensional example

We show effectiveness of the proposed approach on a benchmark problem used al-
ready in [3, 37], namely the so-called Tartar’s broken-extremal example [54] modified
for the two-dimensional case like in [8, Sect.8]. To be more specific, let us consider
the square Q := (0, K)™ with n = 2 with the side K > 0 and, for almost all = € ),
all s € R?, and all v € R,

o1(z,8) = |s — al?|s + al?, (4.1a)
eo(z,u) == (u—g(a- .75))2 with (4.1b)
9(6) 1= 1o (6~ 6)° — 5(6 — &)" (11¢)

for a = (cos ¢, sin ¢) with ¢ = 7/6 and for &, = 1/2. Note that (4.1a) (when shifted
by a constant) fits with (2.6a) for p = 4 and that ¢, (z,-) € I14(R?), hence Section 3
applies for k& = 2 = n; note that ¢;(z,s) from (4.1a) is indeed a polynomial of the
4th order in terms of s = (s1, 89):

©1(2,51,50) = 5T+ 58+ 25252 — 52 4+ 52 — 23515, + 1. (4.2)

Then according to (cf. [54]), the relaxed problem (98P ) has the unique solution

g(a-z) for a -z € (0,&,),

_ o 4.3
R CEE= Y orace @D,
. 1—a .2Vu(:p) 5o l1+a .QVu(:r:) 5, fora-ze(0,&), (4.3D)

Seuie) for a -z € (&,V2),

provided we choose the boundary data up := u|sq with u just from (4.3a).

We use a regular triangulation 7; for the finite element mesh shown in figure 1.

We have implemented the convex mathematical program corresponding to the
optimization problem (99, ) defined in (u,m) variables, where we represent the
admissible function u by using a finite element linear interpolation basis, defined by
the finite element mesh shown in 1. With the optimal vectors m* so obtained, we first
check either if they actually represent the algebraic moments of a two dimensional
probability measure or not. If not we increase x and try again. For this case we
have stopped in k = 3. Usually, for coercive polynomials, we obtain valid set of
moments in a few steps, just taking x a bit greater than the degree of ;.

Afterwards we have obtained a set of bi-dimensional moments, we use the mar-
ginal moments on the axis z and y to construct the probability measure that they
represent. We must notice that this procedure is not possible in general cases, we
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. |
1 5 9 13 17 21 25 29 33 37
2 4 6 8 10 12 | 14 16 | 18 20 | 22 24| 26 28 | 30 32| 34 36 | 38 40
3 7 1 15 19 23 27 31 35 39
41 45 49 53 57 61 65 69 73 77
42 44 | 46 48 | 50 52 | 54 56 | 58 60 | 62 64 | 66 68 | 70 72| 74 76 | 78 80
43 47 51 55 59 63 67 71 75 79
08 - e
81 85 89 93 97 101 105 109 113 117
82 84 | 86 88 | 90 92 | 94 96 | 98 100 | 102 104 | 106 108 | 110 112 114 116 | 118 120
83 87 91 95 99 103 107 111 115 119
121 125 129 133 137 141 145 149 153 157
122 1241 126 128 130 132 134 136 | 138 140 | 142 144 | 146 148 | 150 152 154 156 | 158 160
123 127 131 135 139 143 147 151 155 159
0.6 — -
161 165 169 173 177 181 185 189 193 197
162 164 | 166 168 | 170 172|174 176 | 178 180 | 182 184 | 186 188 | 190 192 | 194 196 | 198 X 200
163 167 171 175 179 183 187 191 195 199
201 205 209 213 217 221 225 229 233 237
202 X 204 | 206 X 208 | 210 X 212 | 214 X 216 | 218 )X 220 | 222 X 224 | 226 X 228 | 230 X 232 | 234 X 236 | 238 XX 240
203 207 211 215 219 223 227 231 235 239
0.4 e
241 245 249 253 257 261 265 269 273 277
242 X 244 | 246 X 248 | 250 X 252 | 254 X 256 | 258 X 260 | 262 X 264 | 266 X 268 | 270 X 272 | 274 X 276 | 278 X 280
243 247 251 255 259 263 267 271 275 279
281 285 289 293 297 301 305 309 313 317
282 X 284 | 286 X 288 | 290 X 292 | 294 XX 296 | 298 X 300 | 302 X 304 | 306 X 308 | 310 X 312 | 314 X 316 | 318 X 320
283 287 291 295 299 303 307 311 315 319
02+ e
321 325 329 333 337 341 345 349 353 357
322 X 324 | 326 X 328 | 330 X 332 | 334 X 336 | 338 X 340 | 342 X 344 | 346 )X 348 | 350 X 352 | 354 X 356 | 358 X 360
323 327 331 335 339 343 347 351 355 359
361 365 369 373 377 381 385 389 393 397
362 X 364 | 366 X 368 | 370 X 372 | 374 X 376 | 378 )X 380 | 382 X 384 | 386 X 388 | 390 X 392 | 394 X 396 | 398 X 400
363 367 371 375 379 383 387 391 395 399
ok |
\ \ \ \ \ \
0 02 0.4 0.6 038 1

Figure 1: Finite element mesh

success here because we obtain moments which represent the probability measures
defining the convex hull of the non convex potential ;. This is an interesting ap-
plication of Caratheosory’s theorem. See [44, 45] for a clearer description of the
algorithms that we use to calculate the optimal Young measure from the optimal
moments obtained in (9P, ).

Numerical results are shown in Table 1. Beside the number of every mesh-
element, we show the optimal Young measure by specifying two probabilities and
two bi-dimensional supports. Thus, in the heading of Table 1, el stands for element
number, pr stands for probability and sz! stands for the z-coordinate of the sup-
porting point corresponding to the probability pri. Now the reader can easily grasp
the meaning of all the items into the heading line of Table 1.

The optimal surface u* shown in 2, has been calculated by using the correspond-
ing coefficients of a first-order spline basis, defined over the the finite-element mesh
shown in 1. Calculations have been done by implementing the model in Matlab
code, where optimization routines have been linked to an Ampl interface, see [45]
for a deeper description of all the minor details of this implementation.
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Figure 2: Optimal v* based in the finite element mesh of 1.

5 Conclusions

In this paper we have shown the mathematical analysis of variational problems given
in the general way (J3) where the potential ¢ can be expressed as a non-linear, non-
convex multidimensional polynomial in the gradient of the admissible function wu.
We also propose a very specific numerical method based in convex optimization to
find explicit generalized solutions defined in Young measures. This approach is very
enlightening for everybody engaged with models in non-linear elasticity and other
branches of mathematical physics implied with non-linear variational problems. A
good deal of research follows now, to exploit numerically the methods and techniques
proposed in this work.
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Figure 3: Optimal bi-dimensional parametrized measures (continued)
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