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Kinds of data

Experiments produce results which are observed.

Observations are measured and/or classified

If classified: qualitative or categorical data. No order is
implied.

If measured: quantitative data. Order is implicit.

Discrete measurements (all measurements)

Continuous measurements (an assumption)
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Measures of difference (positive case)

Example: tallness of a person

Two adults are a1 = 160 and a2 = 180 cm tall.
Two babies are b1 = 40 and b2 = 60 cm tall

Are the two differences 20cm? (Absolute scale)
Or better: the first adult is a1/a2 = 0.89 times the second,
and the first baby is b1/b2 = 0.67 (Relative scale)

For the relative scale symmetry would be preferable:

a1

a2
− b1

b2
= 0.22 6= 0.38 =

b2

b1
− a2

a1

Log-ratio gives symmetry to relative scale:

ln(a1)− ln(a2) = −0.12 , ln(b1)− ln(b2) = −0.41



logo

Data and scale Random variables and sample space Probability distributions

Measures of difference (interval case)

Probabilities of an event: How do you measure differences
between probabilities?

Absolute: |p2 − p1|
Relative: | ln(p2)− ln(p1)|
Logistic: | ln(p2/(1− p2))− ln(p1/(1− p1))|/

√
2

p1 p2 abs. dif. rel. dif. S2 dif.
0.0001 0.0002 0.0001 0.6931 0.4902

0.5 0.5001 0.0001 0.0002 0.0003
0.9999 0.9998 0.0001 0.0001 0.4902

Absolute: no scale at all

Relative: scaled near 0; no symmetry

Logistic: scaled; symmetry
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Behavior at the borders or end-points

Examples:

Tallness of 0cm does not correspond to a person!

If an event has prob. 0 or 1, the probabilistic study is
useless!

If there is exactly 0ppb of an element, please forget it!

An earthquake of magnitude 0 is not an earthquake!

A temperature of 0 Kelvin is unattainable!

Absurd or unattainable border points:

They should be placed at the infinity of the scale!
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Scaling transformations of data

Cases of data support and recommended transformation:

Real data: scale is absolute. No transformation.
Examples: unknown!

Positive data: scale is relative. Log-transformation
Examples: Wind speed, wave-height, earthquake
magnitude, tallness...

Interval data: scale is relative and symmetric. Logistic
transformation.
Examples: proportions, concentrations, probabilities...
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Logarithmic transformation

Log-transformation: R+ → R

y = ln(x − x0) , x0 = 0
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Logistic (Logit) transformation

Logit transformation (a, b) → R

y = ln
x − a
b − x

, a = 0, b = 100
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Transformations of data

They do change the scale of data
The adequate transformation is a subjective choice. It
depends on

information carried by the data (relative, absolute,
directional,...)
how differences are measured (ratios, differences,...)
the support of the observations (real, positive, interval,...)

Adjustment to a given distribution is not a good reason for
transformation of data
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Random variables

X : (Ω,A, PΩ)︸ ︷︷ ︸
probabilityspace

experimental conditions

→︸︷︷︸
random variables

experiment

(S,B, P)︸ ︷︷ ︸
sample space

observable results

Events: A, B

B ∈ B ⇒ X−1(B) = A ∈ A

Probabilities: X = X (ω)

P[X ∈ B] = PΩ[ω ∈ A]
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Univariate random variable X , sample space R

Cumulative distribution function (cdf)

FX (x) = P[X ≤ x ], X ∈ R

Probability function: support is discrete

pX (xi) = P[X = xi ] = FX (xi+1)− FX (xi) , xi ∈ support

Probability density function(pdf) support S ∈ R

B ∈ B , B ⊂ R , P[X ∈ B] =

∫
B

fX (x) dx

f (x) =
d
dx

FX (x) (a.e.)
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Disappointing issues about pdf (I)

Assume that the support is X > 0. Then

P[X = x0 > 0] =

∫
{x0}

fX (x) dx = 0 !!!

Which is the difference between x0 > 0, a possible value of X ,
and an impossible value x1 < 0, also satisfying
P[X = x1 < 0] = 0 ?

The sample space R is not adequate

Try to stretch the sample space to R+ !
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Disappointing issues about pdf (II)

Probability is represented by definition

P[X ∈ B] =

∫
B

dP =

∫
B

dP
dλ

dλ ≈
∑ dP

dλ
(b′

i ) · λ{bi , bi+1}

pdf with respect to the reference measure λ

dP
dλ

(x) = f λ
X (x)

Why λ{bi , bi+1} = |bi+1 − bi | (Lebesgue measure)?

Selection of the reference measure λ:
should be in accordance of the scale of data!

And the pdf depends on λ!!!
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Mean and variance

X r.v. with pdf fX (sample space R)
Mean

E[X ] = µ =

∫
R

x fX (x) dx

Variance

Var[X ] =

∫
R
(x − µ)2 fX (x) dx , µ = E[X ]

Alternative definitions

Variability: V (ξ) =
∫

R d2(x , ξ) fX (x) dx

Mean: µ = argminξV (ξ)

Variance: Var[X ] = V (µ) =
∫

R d2(x , µ) fX (x) dx
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Disappointing issues about mean and variance

Distance
In R, d(x , y) = |x − y |

In R+, d+(x , y) = | ln x − ln y |

If the sample space is R+,

Why to use d(·, ·) of R? Do these definitions work better?

Var+[X ] =

∫
R+

d2
+(x , µ) fX (x) dx

E+[X ] =

∫
R+

x f λ+

X (x) dλ+ = exp(E[ln X ])

λ+{a, b} = | ln b − ln a|
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Normal distribution (univariate)

Sample space and support: R

fX (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)

E[X ] = µ , Var[X ] = σ2

Symmetric with respect to µ

Sums of normal variables are normal

Sums of non-normal variables are approached by normal
ones
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Multivariate normal distribution

Sample space and support: R

fX(x) =
1√

2π(det Σ)n
exp

(
−1

2
(x − µ)′Σ−1(x − µ)

)

E[X] = µ

Cov[X] = E[(x − µ)(x − µ)′] = Σ, (det Σ 6= 0)

Symmetric with respect to µ

Sums, marginals and conditionals of normal variables are
normal

Sums of non-normal variables are approached by normal
ones
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