The statistical analysis of compositional data:

Coordinate representation

Prof. Dr. Juan José Egozcue Prof. Dr. Vera Pawlowsky-Glahn Ass. Prof. Dr. René Meziat

Instituto Colombiano del Petróleo Piedecuesta, Santander, Colombia March 20–23, 2007

Summary

- 1 clr representation of compositions
- 2 Orthonormal basis. Balances
- 3 Enhancing interpretation using balance-coordinates

Definition of clr coefficients

Composition $\mathbf{x} \in \mathcal{S}^D$

Centered log-ratio of **x**, $clr(\mathbf{x})$, is the unique \mathbb{R}^D -vector $\boldsymbol{\xi} = [\xi_1, \xi_2, \dots, \xi_D]$, satisfying

$$\mathbf{x} = \mathrm{clr}^{-1}(\boldsymbol{\xi}) = \mathcal{C}\left(\exp(\boldsymbol{\xi})\right) \; , \; \sum_{i=1}^D \xi_i = 0 \; .$$

The *i*-th clr coefficient is

$$\xi_i = \frac{\ln x_i}{g(\mathbf{x})}$$
 , $g(\mathbf{x}) = \left(\prod_{i=1}^D x_i\right)^{1/D}$

Properties of clr coefficients

If
$$\sum_{1}^{D} \xi_{i} = 0$$
, $\boldsymbol{\xi} \in \mathbb{R}_{0}$

clr inverse

$$\operatorname{clr}: \mathcal{S}^D o \mathbb{R}^D_0 \subset \mathbb{R}^D$$
 is one-to-one and
$$\operatorname{clr}^{-1}(\boldsymbol{\xi}) = \mathcal{C}[\exp(\xi_1), \exp(\xi_2), \dots, \exp(\xi_D)] = \boldsymbol{x}.$$

- clr transforms \oplus , \odot into +, \cdot : $\operatorname{clr}(\alpha \odot \mathbf{x_1} \oplus \beta \odot \mathbf{x_2}) = \alpha \cdot \operatorname{clr}(\mathbf{x_1}) + \beta \cdot \operatorname{clr}(\mathbf{x_2})$
- $\|\mathbf{x}_1\|_a = \|\operatorname{clr}(\mathbf{x}_1)\|$, $d_a(\mathbf{x}_1, \mathbf{x}_2) = d(\operatorname{clr}(\mathbf{x}_1), \operatorname{clr}(\mathbf{x}_2))$

Orthonormal basis

Definition

Compositions \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_{D-1} in \mathcal{S}^D are an orthonormal basis if

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle_a = \langle \mathrm{clr}(\mathbf{e}_i), \mathrm{clr}(\mathbf{e}_j) \rangle = \delta_{ij}$$

clr matrix of the basis (D-1, D)

$$\Psi = \begin{pmatrix} \operatorname{clr}(\mathbf{e}_1) \\ \operatorname{clr}(\mathbf{e}_2) \\ \dots \\ \operatorname{clr}(\mathbf{e}_{D-1}) \end{pmatrix} , \quad \Psi \Psi' = I_{D-1} , \quad \Psi' \Psi = I_D - (1/D) \mathbf{1}'_D \mathbf{1}_D$$

Coordinates

Given an orthonormal basis \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_{D-1} in \mathcal{S}^D , Expression in coordinates

$$\mathbf{x} = \bigoplus_{i=1}^{D-1} x_i^* \odot \mathbf{e}_i \; , \; x_i^* = \langle \mathbf{x}, \mathbf{e}_i \rangle_a$$

Isometric log-ratio: assigns coordinates to a composition $ilr : \mathcal{S}^D \to \mathbb{R}^{D-1}$ is one-to-one.

ilr
$$\mathbf{x} \rightarrow \mathbf{x}^* = [x_1^*, x_2^*, \dots, x_{D-1}^*]$$

Properties of ilr-coordinates

Given an orthonormal basis \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_{D-1} in \mathcal{S}^D ilr and ilr⁻¹

$$\mathbf{x}^* = \mathrm{ilr}(\mathbf{x}) = \mathrm{clr}(\mathbf{x}) \cdot \mathbf{\Psi}'$$
 , $\mathbf{x} = \mathcal{C}\left(\exp(\mathbf{x}^*\mathbf{\Psi})\right)$

Isometry: ilr : $S^D \to \mathbb{R}^{D-1}$

$$ilr(\alpha \odot \mathbf{x}_1 \oplus \beta \odot \mathbf{x}_2) = \alpha \cdot ilr(\mathbf{x}_1) + \beta \cdot ilr(\mathbf{x}_2) = \alpha \cdot \mathbf{x}_1^* + \beta \cdot \mathbf{x}_2^*$$
$$\langle \mathbf{x}_1, \mathbf{x}_2 \rangle_a = \langle ilr(\mathbf{x}_1), ilr(\mathbf{x}_2) \rangle = \langle \mathbf{x}_1^*, \mathbf{x}_2^* \rangle$$
$$\|\mathbf{x}\|_a = \|ilr(\mathbf{x})\| \quad , \quad d_a(\mathbf{x}_1, \mathbf{x}_2) = d(ilr(\mathbf{x}_1), ilr(\mathbf{x}_2))$$

Building an orthonormal basis of balances

the intuitive approach

example: for $\mathbf{x} \in \mathcal{S}^5$ define a sequential binary partition and obtain the coordinates in the corresponding orthonormal basis

						coordinate		
1	+1	-1	+1	+1	-1	$y_1 = \sqrt{\frac{3 \cdot 2}{3 + 2}} \ln \frac{(x_1 \cdot x_3 \cdot x_4)^{1/3}}{(x_2 \cdot x_5)^{1/2}}$ $y_2 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_2}{x_5}$ $y_3 = \sqrt{\frac{1 \cdot 2}{1 + 2}} \ln \frac{x_1}{(x_3 \cdot x_4)^{1/2}}$ $y_4 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_3}{x_4}$		
2	0	+1	0	0	-1	$y_2 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_2}{x_5}$		
3	+1	0	-1	-1	0	$y_3 = \sqrt{\frac{1 \cdot 2}{1 + 2}} \ln \frac{x_1}{(x_3 \cdot x_4)^{1/2}}$		
4	0	0	+1	-1	0	$y_4 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{x_3}{x_4}$		

Balances and balancing elements

Coordinates in an orthonormal basis obtained from a sequential binary partition:

$$y_i = \sqrt{rac{r_i \cdot \mathbf{s}_i}{r_i + \mathbf{s}_i}} \ln rac{(\prod_{j \in R_i} \mathbf{x}_j)^{1/r_i}}{(\prod_{\ell \in S_i} \mathbf{x}_\ell)^{1/\mathbf{s}_i}}$$

where i = order of partition, R_i and S_i index sets, r_i the number of indices in R_i , s_i the number in S_i . The corresponding balancing element is

$$\mathbf{e}_i = \mathcal{C}(\exp[\psi_{i1}, \psi_{i2}, \dots, \psi_{iD}])$$

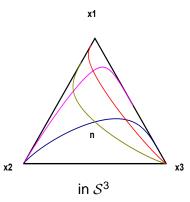
$$\psi_{i+} = +\sqrt{\frac{\mathbf{s}_i}{r_i(r_i + \mathbf{s}_i)}} \quad , \quad \psi_{i-} = -\sqrt{\frac{r_i}{\mathbf{s}_i(r_i + \mathbf{s}_i)}} \quad , \quad \psi_{i0} = \mathbf{0}$$

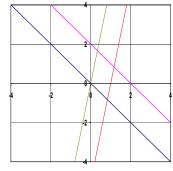
parallel lines

Processes of exponential growth or decay are straight-lines:

$$\mathbf{x}_i(t) = \mathbf{x}_i(0) \cdot \exp(\lambda_i t) , i = 1, 2, \dots, D$$

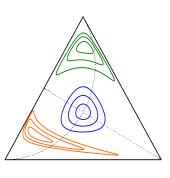
 $\mathbf{x}(t) = \mathbf{x}(0) \oplus (t \odot \exp(\lambda))$



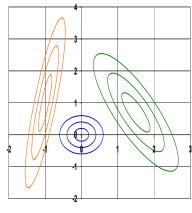


coordinate representation

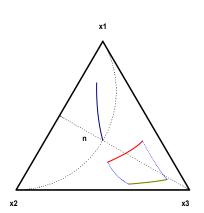
circles and ellipses

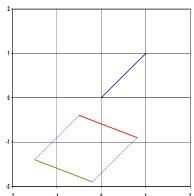


in \mathcal{S}^3

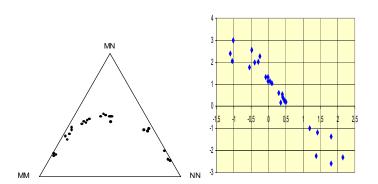


coordinate representation





Example: genetic hypothesis (Hardy-Weinberg)



data: genotypes in the MN system of blood groups; **question:** despite the high variability which can be observed, is there any inherent stability in the data? do they follow any genetic law?

Example of orthogonal coordinates (using SBP)

Votes in a district. Left wing parties L_i and right wing parties R_i

level	<i>L</i> ₁	L ₂	R ₁	R ₂	L ₃	L ₄	r	s
1	+1	+1	-1	-1	+1	+1	4	2
2	+1	-1	0	0	-1	-1	1	3
3	0	+1	0	0	-1	-1	1	2
4	0	0	0	0	+1	-1	1	1
5	0	0	-1	+1	0	0	1	1
1	$+\frac{1}{\sqrt{12}}$	$+\frac{1}{\sqrt{12}}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	$+\frac{1}{\sqrt{12}}$	$+\frac{1}{\sqrt{12}}$		
2	$+\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{12}}$	0	0	$-\frac{1}{\sqrt{12}}$	$-\frac{1}{\sqrt{12}}$		Ψ
3	0	$+\frac{\sqrt{2}}{\sqrt{3}}$	0	0	$-\frac{1}{\sqrt{6}}$	$-\frac{1}{\sqrt{6}}$		
4	0	ď	0	0	$+\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$		
5	0	0	$+\frac{1}{\sqrt{2}}$	0	Õ	$-\frac{\sqrt{1}}{\sqrt{2}}$		

Balances and projections

What information conveys a balance (of two groups of parts)? Information which remains after:

- Removing information not within the subcomposition made of the two groups
- Filter out information within each group of parts

The remaining information is the balance

This is equivalent to set all balances to zero, except that one corresponding to the separation of the two groups

Elections example

 Only left-right: only balance 1 The projection is:

$$\langle \mathbf{x}, \mathbf{e}_1 \rangle_a = \mathcal{C}[g(L), g(L), g(R), g(R), g(L), g(L)]$$

 Information only within the L group: balances 2,3,4 (balance 1, between L – R groups; balance 5, within R)
 The projection is

$$\bigoplus_{i=2,3,4} \langle \mathbf{x}, \mathbf{e}_i \rangle_a = \mathcal{C}[L_1, L_2, g(L), g(L), L_3, L_4]$$

Elections example

 Only left-right: only balance 1 The projection is:

$$\langle \mathbf{x}, \mathbf{e_1} \rangle_a = \mathcal{C}[g(L), g(L), g(R), g(R), g(L), g(L)]$$

Information only within the L group:
 balances 2,3,4
 (balance 1, between L – R groups; balance 5, within R)
 The projection is

$$\bigoplus_{i=2,3,4} \langle \mathbf{x}, \mathbf{e}_i \rangle_{\mathbf{a}} = \mathcal{C}[L_1, L_2, g(L), g(L), L_3, L_4]$$

Elections example (continued)

Remove info within R: balance 5 null
 The projection is:

$$\bigoplus_{i=1}^{4} \langle \mathbf{x}, \mathbf{e}_i \rangle_{a} = \mathcal{C}[L_1, L_2, g(R), g(R), L_3, L_4]$$

Information from L - R balance is still in the projection.

Assume L₂, L₃, L₄ are nationalist (I); and L₁ is not nationalist (I);
 Examine balance LI – LN: only balance 2
 The projection is:

$$\langle \mathbf{x}, \mathbf{e}_2 \rangle_a = \mathcal{C}[g(LI), g(LN), g(L), g(L), g(LN), g(LN)]$$

Elections example (continued)

Remove info within R: balance 5 null
 The projection is:

$$\bigoplus_{i=1}^{4} \langle \mathbf{x}, \mathbf{e}_i \rangle_a = \mathcal{C}[L_1, L_2, g(R), g(R), L_3, L_4]$$

Information from L - R balance is still in the projection.

Assume L₂, L₃, L₄ are nationalist (I); and L₁ is not nationalist (I);
 Examine balance LI – LN: only balance 2
 The projection is:

$$\langle \mathbf{x}, \mathbf{e}_2 \rangle_a = \mathcal{C}[g(LI), g(LN), g(L), g(L), g(LN), g(LN)]$$