The statistical analysis of compositional data:

Processes and regression

Prof. Dr. Juan José Egozcue Prof. Dr. Vera Pawlowsky-Glahn Ass. Prof. Dr. René Meziat

Instituto Colombiano del Petróleo Piedecuesta, Santander, Colombia March 20–23, 2007

Summary

- 1 The Normal in the simplex
- 2 Simplicial processes
- Simplicial regression

Normal distribution in S^D

Coordinates: X^* random variable in \mathbb{R}^{D-1}

$$\mathbf{X}^* \sim \mathrm{N}(\mu^*, \mathbf{\Sigma})$$

$$f_{\mathbf{X}^*}(\mathbf{x}^*) = \frac{1}{\sqrt{2\pi(\det\Sigma)^n}} \exp\left(-\frac{1}{2}(\mathbf{x}^* - \boldsymbol{\mu}^*)'\Sigma^{-1}(\mathbf{x}^* - \boldsymbol{\mu}^*)\right)$$

Simplex: given a basis in S^D and $\mathbf{X} = i l r^{-1}(\mathbf{X}^*)$, then

$$\mathbf{X} \sim N_{\mathcal{S}^D}(\mu, \mathbf{\Sigma})$$

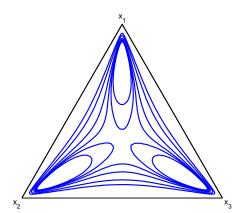
$$\mu = ilr^{-1}(\mu^*)$$

The variance is represented in both cases by Σ

Normal on the simplex (logistic-normal)

 $S^3 \subset \mathbb{R}^2$, Lebesgue measure as reference:

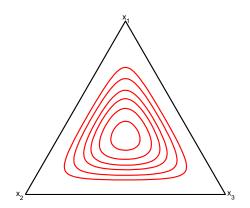
Radon-Nikodym derivative: $f = \frac{dP}{d\lambda}$



Normal on the simplex (logistic-normal)

 S^3 as Euclidean space, Aitchison measure as reference:

Radon-Nikodym derivative:
$$f = \frac{dP}{d\lambda_S} = \frac{dP}{d\lambda} \cdot \frac{d\lambda}{d\lambda_S}$$



Representation in the ternary diagram

- Compute the elliptical contours of the Normal distribution in coordinates, by points
- Select a basis, and take ilr⁻¹ of each point in the contours
- plot the ilr⁻¹ transformed points in the ternary diagram

This procedure is equivalent to represent the density with respect to the Aitchison measure

To obtain contours with respect Lebesgue measure in the ternary diagram, the Jacobian of the ilr transformation is taken into account

Exponential decay or growth

Bacteria growth: mass of 3 species: $x_1(t)$, $x_2(t)$, $x_3(t)$ Growth without interaction:

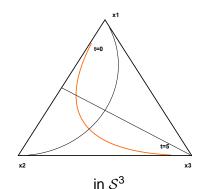
$$x_i(t) = x_i(0) \cdot \exp(\lambda_i t) , (\lambda_i > 0) , i = 1, 2, 3$$

Considered as compositional: straight-line in S^3

$$\mathbf{x}(t) = \mathbf{x}(0) \oplus (t \odot \exp(\lambda))$$

Bacteria growth

$$\mathbf{x}(0) = [10.0, 2.0, 0.1], \ \lambda = [1, 2, 3], \ t = 0, \dots, 5$$

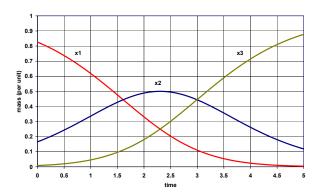


g .1 .1 .1 .2 .3 .4

coordinate representation

Bacteria growth

$$\mathbf{x}(0) = [10.0, 2.0, 0.1], \ \lambda = [1, 2, 3], \ t = 0, \dots, 5$$



Complementary process

Three isotopes:

 $x_1(t)$ radioactive; decays with rate λ_1

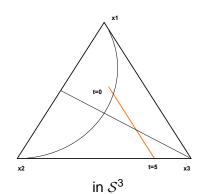
 $x_2(t)$ inert; does neither grow nor decay $\lambda_2 = 0$

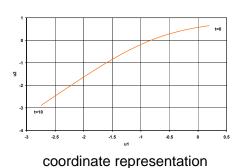
 $x_3(t)$ residual of decomposition of x_1

$$x_1(t) = x_1(0) \cdot \exp(\lambda_1 t) , \ x_2(t) = x_2(0) , \ x_3(t) = x_3(0) + x_1(0) - x_1(t)$$

parameter	<i>X</i> ₁	X 2	X 3
disintegration rate	0.5	0.0	0.0
initial mass	1.0	0.4	0.5
balance 1	+1	+1	-1
balance 2	+1	-1	0

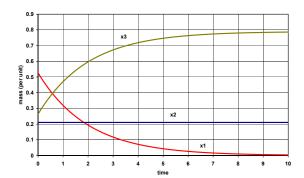
The complementary part $x_3(t)$ makes the process non-linear





Radioactive disintegration

$$\mathbf{x}(0) = [10.0, 2.0, 0.1], \ \lambda = [1, 2, 3], \ t = 0, \dots, 5$$



Perturbation versus mixture

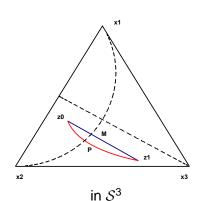
Consider a initial, final composition of a liquid, z₀ and z₁

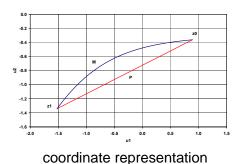
Mixing: change volume composition $[\alpha, 1 - \alpha]$, $0 \le \alpha \le 1$

$$\mathbf{z}(\alpha) = ((1 - \alpha) \cdot \mathbf{z}_0) + (\alpha \cdot \mathbf{z}_1)$$

Perturbing:

$$\mathbf{z}(\tau) = \mathbf{z}_0 \oplus \{\tau \odot (\mathbf{z}_1 \ominus \mathbf{z}_0)\} = ((1 - \tau) \odot \mathbf{z}_0) \oplus (\tau \odot \mathbf{z}_1)$$





Regression model

Data: for i = 1, 2, ..., ncompositional response, $\mathbf{x}_i \in \mathcal{S}^D$, real covariates, $\mathbf{t}_i = [t_0, t_1, t_2, ..., t_r], t_0 = 1$

Statement: find compositional coefficients $\beta_i \in \mathcal{S}^D$, minimizing

$$SSE = \sum_{i=1}^{n} \|\hat{\mathbf{x}}(\mathbf{t}_i) \ominus \mathbf{x}_i\|_a^2,$$

$$\hat{\mathbf{x}}(\mathbf{t}) = \beta_0 \oplus (t_1 \odot \beta_1) \oplus \cdots \oplus (t_r \odot \beta_r) = \bigoplus_{i=0}^r (t_i \odot \beta_i),$$

Regression model in coordinates

- Select a basis in S^D , e.g. using sbp;
- Represent responses in coordinates: $\mathbf{x}_i^* = h(\mathbf{x}_i) \in \mathbb{R}^{D-1}$;
- Solve D 1 ordinary regression problems in coordinates to obtain coordinates of coefficients;
- Back-transform results into S^D

For k = 1, 2, ..., D, find β^* minimizing

$$SSE_k = \sum_{i=1}^n |\hat{X}_k^*(t_i) - X_{ik}^*|^2 , \ k = 1, 2, ..., D-1 ,$$

$$\hat{\mathbf{x}}_{k}^{*}(\mathbf{t}) = \beta_{0k}^{*} + \beta_{1k}^{*} t_{1} + \cdots + \beta_{rk}^{*} t_{r}$$

Back-transform: $\beta_j = h^{-1}(\beta_j^*)$

Example: statement

Vulnerability of a dike:

- Safety level or design d (wave-height-design)
- External actions h (wave-height of a storm)
- Outputs after an action θ_k , $k = 0, 1, \dots, 4$
- Vulnerability description: $\mathbf{x}(d, h) = P[\theta_k | d, h]$

Available data (from Monte Carlo simulations):

$$\mathbf{x}(d_i, h_i) = P[\theta_k | d_i, h_i], i = 1, 2, ..., n$$

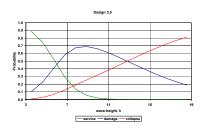
affected by errors, especially, for low probabilities.

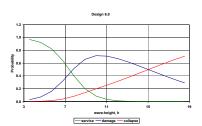
example: data set

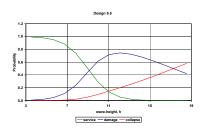
Number of data: n = 11Number of parts: D = 3

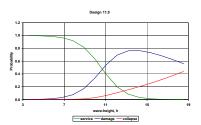
Number of covariates: r = 2

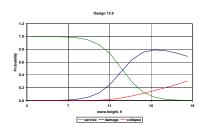
Design	Wave-height	p. service	p. damage	p.collapse
3.0	3.0	0.50	0.49	0.01
3.0	10.0	0.02	0.10	0.88
10.0	3.0	0.999	0.0009	0.0001
10.0	10.0	0.30	0.65	0.05
5.0	4.0	0.95	0.049	0.001
6.0	9.0	80.0	0.85	0.07
7.0	5.0	0.97	0.027	0.003
8.0	3.0	0.997	0.0028	0.0002
9.0	9.0	0.35	0.55	0.01

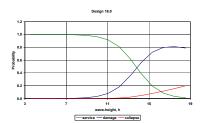


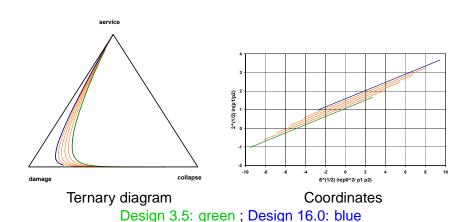












Example: analysis of residuals

ANOVA:

$$c_1 = \frac{1}{6} \ln \frac{p_0^2}{p_1 p_2}$$
, $p - \text{value} = 2.69E - 05$
 $c_2 = \frac{1}{2} \ln \frac{p_1}{p_2}$, $p - \text{value} = 3.15E - 01$

