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Structure

Mathematical sentences

All Euclidean spaces of equal dimension are isomorphic
and isometric

All separable Hilbert spaces of equal dimension are
isomorphic and isometric

Consequence

If S is a set and there is a one-to-one mapping ϕ : S → Rn then
an Euclidean structure is induced on S

Which particular ϕ is adequate?

Operations and metrics should be interpretable and applicable
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Structure

The case of the simplex of n parts

Sn =

{
x = [x1, . . . , xn] ∈ Rn

∣∣∣∣∣ xi > 0,

n∑
i=1

xi = κ

}
The way was not to find ϕ !

non-isometric transformations: alr, clr (Aitchison 1982-86)

perturbation (sum) (Aitchison, 1982)

distance, clr-compatible (Aitchison, 1982)

Euclidean structure (Billheimer et al. 2001;
Pawlowsky-Glahn and Egozcue 2001)

isometry, ϕ (Egozcue et al. 2003)
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Euclidean space structure of Sn

for x, y ∈ Sn, α ∈ R, and C the closure operation

perturbation: x ⊕ y = C[x1y1, . . . , xnynn]

powering: α� x = C[xα
1 , . . . , xα

n ]

inner product:

〈x, y〉a =
1
n

∑
i<j

ln
xi

xj
ln

yi

yj

associated norm and distance:

‖x‖2
a =

1
n

∑
i<j

(
ln

xi

xj

)2

d2
a (x, y) =

1
n

∑
i<j

(
ln

xi

xj
− ln

yi

yj

)2
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Example of orthogonal coordinates (using SBP)

A difference with Rn: a canonical basis is not defined
Alternative: orthonormal basis of balances

level x1 x2 x3 x4 x5 x6 r s
1 +1 +1 −1 −1 +1 +1 4 2
2 +1 −1 0 0 −1 −1 1 3
3 0 +1 0 0 −1 −1 1 2
4 0 0 0 0 +1 −1 1 1
5 0 0 −1 +1 0 0 1 1

1 + 1√
12

+ 1√
12

− 1√
3

− 1√
3

+ 1√
12

+ 1√
12

2 +
√

3
2 − 1√

12
0 0 − 1√

12
− 1√

12
Ψ

3 0 +
√

2√
3

0 0 − 1√
6

− 1√
6

4 0 0 0 0 + 1√
2

− 1√
2

5 0 0 + 1√
2

0 0 − 1√
2
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The ilr isometry

Properties of Ψ

Ψ is a (n − 1, n)-matrix

ΨΨt = In−1

ΨtΨ = In − (1/n)1t
n1n

From coordinates to compositions

x =
n−1⊕
i=1

x∗i � ei = Cexp(x∗Ψ) , x∗i = 〈x, ei〉a ,

From compositions to coordinates

x∗ = ln(x) ·Ψt ,
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Linear transformation (endomorphism)

Linear transformation in Rn−1 (coordinates): for any A∗,

y∗ = x∗A∗

Linear transformation in Sn, applying ϕ−1

y = x ◦ A = C
[
. . . ,

n∏
k=1

xak`

k︸ ︷︷ ︸
`−term

, . . .
]

A is not a general (n, n)-matrix:

A∗ = ΨAΨt , A = ΨtA∗Ψ

Rows and columns add to 0

Rank(A)=Rank(A∗) ≤ n − 1



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

The simplex as Euclidean space Calculus on the simplex

Structure

Exponential growth or decay follow straight-lines

The mass of n radioactive isotopes decay with rates λi

(λi ≤ 0 in this case) as

xi(t) = xi(0) · exp(λi t)

Composition of the sample at time t is

Cx(t) = x(0)︸︷︷︸
origin

⊕(t � exp[λ]︸ ︷︷ ︸
direction

)



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

The simplex as Euclidean space Calculus on the simplex

Structure

Compositional lines

Correspond to exponential growth or decay of masses

y = x0 ⊕ (α� x1)

x2

x1

x3

n

x2

x1

x3

n

parallel lines orthogonal lines
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Compositional lines in coordinates

x2

x1

x3

n

-4

-2

0

2

4

-4 -2 0 2 4

in S3 coordinate representation
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Scale and measure

Distance in S2

Distance of a point in S2 to a reference (R, S2).
End-points are at the infinity for S2

0.0

1.0

2.0

3.0

4.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
probability

di
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an
ce
s
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Scale and measure

Aitchison measure in Sn

Lebesgue measure of a hyper-rectangle in R and Rn−1

(Cartesian coordinates)

λ{(ai , bi)} = |bi − ai | , λn−1{(a, b)} =
n−1∏
i=1

|bi − ai |

For a general borelian, B∗, λ{B∗}.

Aitchison measure of B = ϕ−1(B∗) in Sn

Coordinates (isometry): x∗ = ϕ(x)

x ∈ Sn , x∗ ∈ Rn−1

λSn{B} = λn−1{ϕ(B)} = λn−1{B∗}
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Scale and measure

Normal on the simplex (logistic-normal)

S3 ⊂ R2, Lebesgue measure as reference:
Radon-Nikodym derivative: f = dP

dλ

x
1

x
2

x
3
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Scale and measure

Normal on the simplex (logistic-normal)

S3 as Euclidean space, Aitchison measure as reference:
Radon-Nikodym derivative: f = dP

dλS
= dP

dλ ·
dλ

dλS

x
1

x
2

x
3
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Consequences and extension

Aitchison Euclidean geometry in the simplex motivates:

Re-definition of measures of location and dispersion in
statistics

An extension from compositions to probability densities
(and measures)

The calculus in the simplex: new differential models
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Calculus

Derivative

If differences in Sn are computed using 	 ≡ (−1)�, definition
of derivatives should change.

h : R → Sn

Derivative in the simplex

D⊕h(t) = lim
τ→0

1
τ
� (h(t + τ)	 h(t))

= ϕ−1 d
dt

ϕ(h(t))

= C exp
d
dt

ln(h(t))
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Example: predator-prey Volterra ODE

Dtx1 = b1x1 + a12x1x2
Dt x1
x1

= b1 + a12x2

Dtx2 = b2x2 + a21x1x2
Dt x2
x2

= b2 + a21x1

Since D⊕(·) = C exp Dt ln(·),

D⊕x = exp[b1, b2]⊕ exp(x) ◦
(

0 a21

a12 0

)
or in coordinates (a single ODE)

Dtϕ(x) = ϕ(exp[b1, b2]) + ϕ(exp(x))A∗

A∗ = −a12 + a21

2
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Example: a linear system in S3

Expression in S3

D⊕x = x ◦

 0.015 −0.092 0.082
0.861 −0.358 −0.216

−0.871 0.419 0.161



x(0) = C

[√
2
3
,

√
3− 1√

6
,−

√
3 + 1√

6

]
Expression in coordinates (R2)

Dtϕ(x) = ϕ(x)

(
0.01 −0.1

1 −0.2

)
, x(0) = [1, 1]
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Solution of the system

coordinates in time
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Solution of the system

phase in coordinates
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Solution of the system

phase in S3

x1

x2 x3
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Simplicial integrals

Sum is not allowed in the simplex. Perturbation used instead.

h : R → Sn

∫ ⊕
h(t) dt = ϕ−1

(∫
ϕ(h(t)) dt

)
= C exp

(∫
ln(h(t)) dt

)

Riemann sums are∫ ⊕
h(t) dt ≈

⊕
i

(ti+1 − ti)� h(t ′i )
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Example: integration of a Sn valued function

Linear function: (value of a portfolio; disintegration; growth of a
population)

h(t) = x0 ⊕ (t � exp(λ))

Problem: find an average value of h(t) in (0, T )
Naive approach:

h̃ =
1
T

·
∫

(0,T )
h(t) dt

Simplicial mean value:

h̄ =
1
T

�
∫ ⊕

(0,T )
h(t) dt = φ−1

(
1
T

·
∫

(0,T )
h∗(t) dt

)
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Example of mean value in (0, T = 1)

n = 3, λ = [0,−1,−5], x0 = C[1, 1, 1]
Naive approach: mean is not a point of the process(!!)
Simplicial app.: corresponds to value at T/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5 0.75 1
TIME

PA
R

T 
(p

pu
)



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

The simplex as Euclidean space Calculus on the simplex

Calculus

Conclusions

Aitchison geometry of the simplex provides a specific
calculus

Simplicial differential and integral operators may be useful
in modelling compositional phenomena
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Further reading and activities

Mathematical Geology Vol. 37 Nr. 7 (2005) – special
issue on compositional data analysis

Compositional data analysis in the Geosciences: From
theory to practice (October 2006) — special
publication of the Geological Society (SPE 264)

CoDaWork’08 , Girona (Spain), May 2008
(http://ima.udg.es/Activitats/CoDaWork08/)
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