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what are compositional data?

definition: parts of some whole which only carry
relative information

usual units of measurement: parts per unit, percentages,
ppm, ppb, concentrations, ... (constant sum constraint)

examples: geochemical analysis; (sand, silt, clay)
composition; proportions of minerals in a rock; ...
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historical remarks: end of the XIXth century

Karl Pearson, 1897: “On a form of spurious correlation
which may arise when indices are used in the
measurement of organs”

he was the first to point out dangers that may befall the
analyst who attempts to interpret correlations between
ratios whose numerators and denominators contain
common parts

the closure problem was stated within the framework of
classical statistics, and thus within the framework of
Euclidean geometry in real space
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the problem: negative bias & spurious correlation

example: scientists A and B record the composition of aliquots of soil
samples; A records (animal, vegetable, mineral, water) compositions,
B records (animal, vegetable, mineral) after drying the sample; both are
absolutely accurate (adapted from Aitchison, 2005)

sample A x1 x2 x3 x4

1 0.1 0.2 0.1 0.6
2 0.2 0.1 0.2 0.5
3 0.3 0.3 0.1 0.3

sample B x ′1 x ′2 x ′3
1 0.25 0.50 0.25
2 0.40 0.20 0.40
3 0.43 0.43 0.14

corr A x1 x2 x3 x4

x1 1.00 0.50 0.00 -0.98
x2 1.00 -0.87 -0.65
x3 1.00 0.19
x4 1.00

corr B x ′1 x ′2 x ′3
x ′1 1.00 -0.57 -0.05
x ′2 1.00 -0.79
x ′3 1.00
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historical remarks: from 1897 to 1980 (and beyond)

the fact that correlations between closed data are induced
by numerical constraints caused Felix Chayes to attempt
to separate the spurious part from the real correlation

(“On correlation between variables of constant sum”, 1960)

many studied the effects of closure on methods related to
correlation and covariance analysis (principal component
analysis, partial and canonical correlation analysis) or
distances (cluster analysis)

an exhaustive search was initiated within the framework
of classical (applied) statistics
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historical remarks: end of the XXth century

John Aitchison, 1982, 1986: “The statistical analysis of
compositional data”

key idea: compositional data represent parts of some
whole; they only carry relative information

by analogy with the log-normal approach, Aitchison
projected the sample space of compositional data,
the D-part simplex SD, to real space RD−1 or RD,
using log-ratio transformations

the log-ratio approach was born ...
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compositional data are equivalence classes

X2

1

1 X1

compositional data in R2 compositional data in R3

usual representation: the simplex
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compositional data and their sample space

parts of some whole which only carry relative
information

sample space: the simplex (for κ a constant)

SD =

{
x = [x1, . . . , xD] ∈ RD

∣∣∣∣∣ xi > 0,

D∑
i=1

xi = κ

}

standard representation
for D = 3: ternary diagram
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Euclidean space structure of SD

for x, y ∈ SD, α ∈ R, and C the closure operation,

perturbation: x⊕ y = C[x1y1, . . . , xDyD]

powering: α� x = C[xα
1 , . . . , xα

D ]

Aitchison inner product, norm and distance:

〈x, y〉a =
1
D

∑
i<j

ln
xi

xj
ln

yi

yj
, ‖x‖2

a =
1
D

∑
i<j

(
ln

xi

xj

)2

d2
a (x, y) =

1
D

∑
i<j

(
ln

xi

xj
− ln

yi

yj

)2

dimension: (D − 1)
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advantages of Euclidean spaces

orthonormal basis can be constructed: {e1, . . . , eD−1}

coordinates obey the rules of real Euclidean space:

x ∈ SD ⇒ y = [y1, . . . , yD−1] ∈ RD−1, with yi = 〈x, ei〉a
standard methods can be directly applied to coordinates

expressing results as compositions is easy:

if h : SD 7→ RD−1 assigns to each x ∈ SD its coordinates,
i.e. h(x) = y, then

h−1(y) = x =
D−1⊕
i=1

yi � ei
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understanding the Aitchison geometry:
perturbation (shifting)

x2

x1

x3

n

-2

-1

0

1

2

-2 -1 0 1 2

in S3 coordinate representation

( 1√
6

ln x1·x2
x3·x3

, 1√
2

ln x1
x2

)



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

introduction theory example conclusions

understanding the Aitchison geometry:
powering (exponential decay or growth)

x2

x1

x3

0

-1

-2

1

2

-3

3

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4

-3
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in S3 coordinate representation

( 1√
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ln x1·x2
x3·x3

, 1√
2

ln x1
x2
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understanding the Aitchison geometry:
parallel lines (different origins)

x2

x1

x3

n

-4
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0
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in S3 coordinate representation

( 1√
6

ln x1·x2
x3·x3
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ln x1
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understanding the Aitchison geometry:
circles and ellipses (normal densities)
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orthonormal basis: example of construction

define a sequential binary partition and compute the
coefficients for each sample; e.g. for x = [x1, x2, x3, x4, x5] ∈ S5

order x1 x2 x3 x4 x5 coefficient

1 −1 +1 −1 +1 −1 y1 =
√

2·3
2+3 ln (X2·X4)

1/2

(X1·X3·X5)1/3

2 0 +1 0 −1 0 y2 =
√

1·1
1+1 ln X2

X4

3 +1 0 −1 0 −1 y3 =
√

1·2
1+2 ln X1

(X3·X5)1/2

4 0 0 +1 0 −1 y4 =
√

1·1
1+1 ln X3

X5

these type of coordinates are called balances
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orthonormal basis: visualisation

compute summary statistics of each balance
plot the summary statistics in a dendrogram-type graph

x2

x4

x1

x3

x5

boxplots: (p0.05, Q1, Q2, Q3, p0.95) of empirical distributions;

boxplot scale: (−2, 2); horizontal bars ≈ variance
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the treatment of zeros

case 1: the part with zeros is not important for the study
⇒ the part should be omitted

case 2: the part is important, the zeros are essential
⇒ divide the sample into two or more populations,
according to the presence/absence of zeros

case 3: the part is important, the zeros are rounded zeros
⇒ use imputation techniques



V. Pawlowsky-Glahn 
and 

J. J. Egozcue 

introduction theory example conclusions

the principle of working on coordinates

select a convenient orthonormal basis

perform any statistical analysis on the coordinates

interpret test results directly

interpret coordinates if results are meaningful in
coordinates, e.g. geochemical processes

obtain results in SD using the inverse if you prefer to
interpret compositions

the principle of working on coordinates in SD is equivalent
to use the Aitchison geometry and the Aitchison measure

(Aitchison measure = Lebesgue measure on coordinates)
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example

granitoid rocks of a progressive chemical weathering
profile developed on the Toorongo granodiorite in South
Australia (Nesbitt and Markovics, 1977)

15 samples and 12 major elements
sample space: S12

data used to model compositional change
by von Eynatten, Barceló-Vidal, and Pawlowsky-Glahn
(2003, Math. Geol. 35(3))
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sequential binary partition

order SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 +1
2 −1 −1 −1 +1 +1 −1 −1 −1 −1 −1 −1 0
3 0 0 0 +1 −1 0 0 0 0 0 0 0
4 −1 −1 −1 0 0 −1 −1 +1 +1 −1 −1 0
5 0 0 0 0 0 0 0 +1 −1 0 0 0
6 −1 −1 +1 0 0 −1 −1 0 0 −1 −1 0
7 −1 −1 0 0 0 −1 −1 0 0 +1 −1 0
8 +1 −1 0 0 0 −1 −1 0 0 0 −1 0
9 0 +1 0 0 0 −1 −1 0 0 0 −1 0

10 0 0 0 0 0 −1 −1 0 0 0 +1 0
11 0 0 0 0 0 −1 +1 0 0 0 0 0

order 1: balance H2O vs. others

order 2: balance {FeO, Fe2O3} vs. others except H2O

order 3: balance FeO vs. Fe2O3

order 4: balance {CaO, Na2O} vs. {SiO2, TiO2, Al2O3, MnO, MgO, K2O, P2O5}
order 5: balance CaO vs. Na2O

order 6: balance {Al2O3} vs. {SiO2, TiO2, MnO, MgO, K2O, P2O5}
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summary statistics of coordinates (balances)

 
 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 

mean 0.92 0.08 -0.01 -0.55 0.02 2.52 0.70 4.51 0.78 -0.55 2.39
std 1.23 0.33 1.13 1.57 0.21 0.40 0.09 0.20 0.12 0.12 0.20
var 1.52 0.11 1.27 2.47 0.04 0.16 0.01 0.04 0.01 0.02 0.04
min -0.71 -0.39 -1.97 -3.93 -0.60 2.19 0.57 4.36 0.57 -0.69 1.71
max 2.98 0.59 1.34 0.80 0.22 3.60 0.84 5.15 1.04 -0.14 2.66

 
total variance = 5.69  
 
correlation matrix  
 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 

y1 1.00 0.69 -0.99 -0.93 -0.59 0.90 0.62 0.81 0.55 0.08 -0.06
y2  1,00 -0.69 -0.46 -0.02 0.32 0.65 0.30 0.62 -0.33 0.26
y3  1.00 0.94 0.57 -0.90 -0.67 -0.83 -0.58 -0.11 0.03
y4   1.00 0.57 -0.95 -0.63 -0.90 -0.49 -0.26 0.12
y5   1.00 -0.77 -0.15 -0.73 -0.29 -0.53 0.02
y6   1.00 0.49 0.94 0.47 0.39 -0.10
y7   1.00 0.62 0.84 0.26 0.51
y8   1.00 0.66 0.60 0.19
y9   1.00 0.42 0.77
y10    1.00 0.49
y11     1.00
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balances-dendrogram

H2O FeO Fe2O3 CaO Na2O Al2O3 K20 SiO2 TiO2 P2O5 MgO MnO

boxplot scale: (−6, 6)
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regression equations of balances

y1

y3

3210-1

2

1

0

-1

-2

S 0,147520
R-Sq 98,5%
R-Sq(adj) 98,4%

Regression
95% CI
95% PI

Fitted Line Plot
y3 =  0,8231 - 0,9068 y1

y1

y4

3210-1

2

1

0

-1

-2

-3

-4

-5

S 0,255488
R-Sq 97,9%
R-Sq(adj) 97,5%

Regression
95% CI
95% PI

Fitted Line Plot
y4 =  0,7392 - 0,2756 y1

- 0,4377 y1**2

Y1 =
√

1·11
1+11 ln H2O

(FeO·Fe2O3·CaO·Na2O·Al2O3·K2O·SiO2·TiO2·P2O5·MgO·MgO)1/11

Y3 =
√

1·1
1+1 ln (FeO)

(Fe2O3)

Y4 =
√

2·7
2+7 ln (CaO·Na2O)1/2

(Al2O3·K2O·SiO2·TiO2·P2O5·MgO·MgO)1/7
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principal component: chemical weathering profile

(Al2O3)

(CaO, Na2O) (K2O, other) 

centred

data

original

data

groups represented: (Al2O3), (CaO, Na2O) and (SiO2, TiO2, MnO,
MgO, P2O5, K2O) = inverse of balances b4 and b6
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conclusions

compositional data have a constraint sample space

the natural measure of difference is a relative measure

the Aitchison geometry offers the possibility of working
in coordinates, which is a simple way to take these facts
into account

main problems: appropriate representation and
interpretation

the balance-dendrogram facilitates finding an appropriate
basis for interpretation
classical statistical analysis can be applied to
coordinates
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