theory 00000000000 example 000000

IAMG Distinguished Lecturer – 2007

Prof. Dr. Vera Pawlowsky-Glahn

Department of Computer Science and Applied Mathematics University of Girona, Spain

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

theory 00000000000 example 000000

The Aitchison geometry of the simplex and the statistical analysis of compositional data

Prof. Dr. Vera Pawlowsky-Glahn

Department of Computer Science and Applied Mathematics University of Girona, Spain

Facultad de Ciencias – Departamento de Matemáticas Universidad de los Andes Bogotá, Colombia, March 15, 2007

> V. Pawlowsky-Glahn and J. J. Egozcue

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

example

conclusions

what are compositional data?

- definition: parts of some whole which only carry relative information
- **usual units of measurement:** parts per unit, percentages, ppm, ppb, concentrations, ... (constant sum constraint)
- **examples:** geochemical analysis; (sand, silt, clay) composition; proportions of minerals in a rock; ...

V. Pawlowsky-Glahn and J. J. Egozcue

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

example 000000 $_{\odot}^{\rm conclusions}$

historical remarks: end of the XIXth century

Karl Pearson, 1897: "On a form of spurious correlation which may arise when indices are used in the measurement of organs"

- he was the first to point out dangers that may befall the analyst who attempts to interpret correlations between ratios whose numerators and denominators contain common parts
- the *closure problem* was stated within the framework of classical statistics, and thus within the framework of Euclidean geometry in real space

V. Pawlowsky-Glahn and J. J. Egozcue

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

introduction	theory	example	conclusions
00000			

the problem: negative bias & spurious correlation

example: scientists A and B record the composition of aliquots of soil samples; A records (animal, vegetable, mineral, water) compositions, B records (animal, vegetable, mineral) after drying the sample; both are absolutely accurate (adapted from Aitchison, 2005)

samp	le A	<i>X</i> 1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4		sample E	3	x'_1	<i>x</i> ₂ '	<i>x</i> ' ₃
1		0.1	0.2	0.1	0.6	-	1		0.25	0.50	0.25
2		0.2	0.1	0.2	0.5		2		0.40	0.20	0.40
3		0.3	0.3	0.1	0.3		3		0.43	0.43	0.14
corr A	<i>x</i> ₁	Х	2	<i>X</i> 3	<i>X</i> ₄		corr B		v'	v '	v '
<i>X</i> ₁	1.00) () .	50	0.00	-0.98	_		-1	<u>^1</u>	A2 0.57	A3
<i>X</i> ₂		1.	00	-0.87	-0.65		x ₁	1	.00	1.00	-0.05
<i>X</i> 3				1.00	0.19		×2			1.00	1.00
<i>X</i> 4					1.00		x ₃				1.00

V. Pawlowsky-Glahn and J. J. Egozcue

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

introduction	theory	example	conclusions
00000			

historical remarks: from 1897 to 1980 (and beyond)

- the fact that correlations between closed data are induced by numerical constraints caused Felix Chayes to attempt to separate the *spurious* part from the *real* correlation
 ("On correlation between variables of constant sum", 1960)
- many studied the effects of closure on methods related to correlation and covariance analysis (principal component analysis, partial and canonical correlation analysis) or distances (cluster analysis)
- an exhaustive search was initiated within the framework of classical (applied) statistics

V. Pawlowsky-Glahn and J. J. Egozcue

theory

example 000000 $_{\odot}^{\rm conclusions}$

historical remarks: end of the XXth century

John Aitchison, 1982, 1986: "The statistical analysis of compositional data"

- key idea: compositional data represent parts of some whole; they only carry *relative information*
- by analogy with the log-normal approach, Aitchison projected the sample space of compositional data, the *D*-part simplex S^D, to real space R^{D-1} or R^D, using log-ratio transformations
- the log-ratio approach was born ...

V. Pawlowsky-Glahn and J. J. Egozcue

(日) (四) (日) (日) (日)

intr	odu	icti	ion

theory •oooooooooooooo **example** 000000 conclusions

compositional data are equivalence classes

introduction	theory	example	conclusions
	0000000000		

compositional data and their sample space

- parts of some whole which only carry relative information
- sample space: the simplex (for κ a constant)

$$\mathcal{S}^{D} = \left\{ \mathbf{x} = [x_1, \dots, x_D] \in \mathbb{R}^{D} \mid x_i > 0, \sum_{i=1}^{D} x_i = \kappa \right\}$$

 standard representation for D = 3: ternary diagram

introduction	theory	example	conclusions
	0000000000		

Euclidean space structure of S^{D}

for $\mathbf{x}, \mathbf{y} \in S^{D}$, $\alpha \in \mathbb{R}$, and C the closure operation,

- perturbation: $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}[x_1y_1, \dots, x_Dy_D]$
- powering: $\alpha \odot \mathbf{x} = \mathcal{C}[x_1^{\alpha}, \dots, x_D^{\alpha}]$
- Aitchison inner product, norm and distance:

$$\langle \mathbf{x}, \mathbf{y} \rangle_a = \frac{1}{D} \sum_{i < j} \ln \frac{x_i}{x_j} \ln \frac{y_i}{y_j}, \quad \|\mathbf{x}\|_a^2 = \frac{1}{D} \sum_{i < j} \left(\ln \frac{x_i}{x_j} \right)^2$$
$$d_a^2(\mathbf{x}, \mathbf{y}) = \frac{1}{D} \sum_{i < j} \left(\ln \frac{x_i}{x_j} - \ln \frac{y_i}{y_j} \right)^2$$

• dimension: (D-1)

V. Pawlowsky-Glahn and J. J. Egozcue

~

・ロット (雪) ・ (目) ・ (日)

introduction	theory	example	conclusions
	0000000000		

advantages of Euclidean spaces

- orthonormal basis can be constructed: $\{\mathbf{e}_1, \ldots, \mathbf{e}_{D-1}\}$
- coordinates obey the rules of real Euclidean space:

$$\mathbf{x} \in S^{D} \Rightarrow \mathbf{y} = [y_{1}, \dots, y_{D-1}] \in \mathbb{R}^{D-1}$$
, with $y_{i} = \langle \mathbf{x}, \mathbf{e}_{i} \rangle_{a}$

- standard methods can be directly applied to coordinates
- expressing results as compositions is easy:

if $h : S^D \mapsto \mathbb{R}^{D-1}$ assigns to each $\mathbf{x} \in S^D$ its coordinates, i.e. $h(\mathbf{x}) = \mathbf{y}$, then

$$h^{-1}(\mathbf{y}) = \mathbf{x} = \bigoplus_{i=1}^{D-1} y_i \odot \mathbf{e}_i$$

V. Pawlowsky-Glahr and J. J. Egozcue

(日) (四) (日) (日) (日)

theory example

conclusions

understanding the Aitchison geometry: perturbation (shifting)

(□) (圖) (E) (E) (E)

V. Pawlowsky-Glahr and J. J. Egozcue

theory

example 000000 conclusions

understanding the Aitchison geometry: powering (exponential decay or growth)

in \mathcal{S}^3

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

V. Pawlowsky-Glahr and J. J. Egozcue

theory 0000000000000 example 000000 conclusions

understanding the Aitchison geometry: parallel lines (different origins)

 $\big(\tfrac{1}{\sqrt{6}}\ln\tfrac{x_1\cdot x_2}{x_3\cdot x_3}, \tfrac{1}{\sqrt{2}}\ln\tfrac{x_1}{x_2}\big)$

V. Pawlowsky-Glahn and J. J. Egozcue

theory 0000000000000 example

conclusions

understanding the Aitchison geometry: circles and ellipses (normal densities)

coordinate representation

 $\left(\frac{1}{\sqrt{6}}\ln\frac{x_1\cdot x_2}{x_2\cdot x_3}, \frac{1}{\sqrt{2}}\ln\frac{x_1}{x_2}\right)$ v. Pawlowsky-Glahm ・ロト ・ 一下・ ・ ヨト ・ ヨト

in \mathcal{S}^3

introduction	theory	example	conclusions
	000000000000		

orthonormal basis: example of construction

define a sequential binary partition and compute the coefficients for each sample; e.g. for $\mathbf{x} = [x_1, x_2, x_3, x_4, x_5] \in S^5$

order	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> ₅	coefficient
1	-1	+1	-1	+1	-1	$y_1 = \sqrt{\frac{2 \cdot 3}{2 + 3}} \ln \frac{(X_2 \cdot X_4)^{1/2}}{(X_1 \cdot X_3 \cdot X_5)^{1/3}}$
2	0	+1	0	-1	0	$y_2 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{X_2}{X_4}$
3	+1	0	-1	0	-1	$y_3 = \sqrt{\frac{1\cdot 2}{1+2}} \ln \frac{X_1}{(X_3 \cdot X_5)^{1/2}}$
4	0	0	+1	0	-1	$y_4 = \sqrt{\frac{1 \cdot 1}{1 + 1}} \ln \frac{X_3}{X_5}$

these type of coordinates are called balances

V. Pawlowsky-Glahn and J. J. Egozcue

・ロット (雪) (日) (日)

introduction	theory	example	conclusions
	000000000000		

orthonormal basis: visualisation

- compute summary statistics of each balance
- plot the summary statistics in a dendrogram-type graph

boxplots: $(p_{0.05}, Q_1, Q_2, Q_3, p_{0.95})$ of empirical distributions; boxplot scale: (-2, 2); horizontal bars \approx variance

V. Pawlowsky-Glahn and J. J. Egozcue

.....

introduction	theory	example	conclusions
	00000000000		

the treatment of zeros

- **case 1:** the part with zeros is not important for the study \Rightarrow the part should be omitted
- case 2: the part is important, the zeros are essential ⇒ divide the sample into two or more populations, according to the presence/absence of zeros
- **case 3:** the part is important, the zeros are rounded zeros \Rightarrow use imputation techniques

V. Pawlowsky-Glahn and J. J. Egozcue

・ロト ・ 同ト ・ ヨト ・ ヨ

introduction	theory	example	co
	0000000000		

the principle of working on coordinates

- select a convenient orthonormal basis
- perform any statistical analysis on the coordinates
- interpret test results directly
- interpret coordinates if results are meaningful in coordinates, e.g. geochemical processes
- obtain results in S^D using the inverse if you prefer to interpret compositions

the principle of working on coordinates in S^D is equivalent to use the Aitchison geometry and the Aitchison measure

(Aitchison measure = Lebesgue measure on coordinates)

V. Pawlowsky-Glahr and J. J. Egozcue

nclusions

introduction	theory	example	conclusions
00000	೦೦೦೦೦೦೦೦೦೦೦	●ooooo	o

example

- granitoid rocks of a progressive chemical weathering profile developed on the Toorongo granodiorite in South Australia (Nesbitt and Markovics, 1977)
 - 15 samples and 12 major elements
 - sample space: S¹²
- data used to model compositional change by von Eynatten, Barceló-Vidal, and Pawlowsky-Glahn (2003, Math. Geol. 35(3))

V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

ntroduction	theory	example	conclusions
		00000	

sequential binary partition

order	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	H ₂ O
1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	+1
2	-1	-1	-1	+1	+1	-1	-1	-1	-1	-1	-1	0
3	0	0	0	+1	-1	0	0	0	0	0	0	0
4	-1	-1	-1	0	0	-1	-1	+1	+1	-1	-1	0
5	0	0	0	0	0	0	0	+1	-1	0	0	0
6	-1	-1	+1	0	0	-1	-1	0	0	-1	-1	0
7	-1	-1	0	0	0	-1	-1	0	0	+1	-1	0
8	+1	-1	0	0	0	-1	-1	0	0	0	-1	0
9	0	+1	0	0	0	-1	-1	0	0	0	-1	0
10	0	0	0	0	0	-1	-1	0	0	0	+1	0
11	0	0	0	0	0	-1	+1	0	0	0	0	0

order 1: balance H₂O vs. others

- order 2: balance {FeO, Fe₂O₃} vs. others except H₂O
- order 3: balance FeO vs. Fe₂O₃
- order 4: balance $\{CaO, Na_2O\}$ vs. $\{SiO_2, TiO_2, Al_2O_3, MnO, MgO, K_2O, P_2O_5\}$
- order 5: balance CaO vs. Na2O
- order 6: balance $\{Al_2O_3\}$ vs. $\{SiO_2, TiO_2, MnO, MgO, K_2O, P_2O_5\}$

V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

example

conclusions

summary statistics of coordinates (balances)

	y 1	y ₂	y₃	y 4	y 5	y 6	y 7	y 8	y ₉	y 10	y 11
mean	0.92	0.08	-0.01	-0.55	0.02	2.52	0.70	4.51	0.78	-0.55	2.39
std	1.23	0.33	1.13	1.57	0.21	0.40	0.09	0.20	0.12	0.12	0.20
var	1.52	0.11	1.27	2.47	0.04	0.16	0.01	0.04	0.01	0.02	0.04
min	-0.71	-0.39	-1.97	-3.93	-0.60	2.19	0.57	4.36	0.57	-0.69	1.71
max	2.98	0.59	1.34	0.80	0.22	3.60	0.84	5.15	1.04	-0.14	2.66

total variance = 5.69

correlation matrix

	y 1	y 2	y₃	y 4	y 5	y 6	y 7	y ₈	y ₉	y 10	y 11
y 1	1.00	0.69	-0.99	-0.93	-0.59	0.90	0.62	0.81	0.55	0.08	-0.06
y ₂		1,00	-0.69	-0.46	-0.02	0.32	0.65	0.30	0.62	-0.33	0.26
y ₃			1.00	0.94	0.57	-0.90	-0.67	-0.83	-0.58	-0.11	0.03
y 4				1.00	0.57	-0.95	-0.63	-0.90	-0.49	-0.26	0.12
y 5					1.00	-0.77	-0.15	-0.73	-0.29	-0.53	0.02
y ₆						1.00	0.49	0.94	0.47	0.39	-0.10
y ₇							1.00	0.62	0.84	0.26	0.51
y ₈								1.00	0.66	0.60	0.19
y ₉									1.00	0.42	0.77
y ₁₀										1.00	0.49
y ₁₁											1.00

V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

ntroduction	theory	example	conclusions
		000000	

balances-dendrogram

V. Pawlowsky-Glahn and J. J. Egozcue

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

introductio	n

example

conclusions

regression equations of balances

$$\begin{split} Y_{1} &= \sqrt{\frac{1\cdot11}{1+11}} \ln \frac{H_{2}O}{(FeO \cdot Fe_{2}O_{3} \cdot CaO \cdot Na_{2}O \cdot Al_{2}O_{3} \cdot K_{2}O \cdot SiO_{2} \cdot TiO_{2} \cdot P_{2}O_{5} \cdot MgO \cdot MgO)^{1/11}} \\ Y_{3} &= \sqrt{\frac{1\cdot1}{1+1}} \ln \frac{(FeO)}{(Fe_{2}O_{3})} \\ Y_{4} &= \sqrt{\frac{2\cdot7}{2+7}} \ln \frac{(CaO \cdot Na_{2}O)^{1/2}}{(Al_{2}O_{3} \cdot K_{2}O \cdot SiO_{2} \cdot TiO_{2} \cdot P_{2}O_{5} \cdot MgO \cdot MgO)^{1/7}} \\ \end{split}$$

introduction	theory	example	conclusions
		00000	

principal component: chemical weathering profile

groups represented: (Al_2O_3) , (CaO, Na_2O) and $(SiO_2, TiO_2, MnO, MgO, P_2O_5, K_2O)$ = inverse of balances b_4 and b_6

. Pawlowsky-Glahn and J. J. Egozcue

introduction	theory	example	conclusions
00000	೦೦೦೦೦೦೦೦೦೦೦	000000	●
conclusions			

- compositional data have a constraint sample space
- the natural measure of difference is a relative measure
- the Aitchison geometry offers the possibility of working in coordinates, which is a simple way to take these facts into account
- main problems: appropriate representation and interpretation
 - the **balance-dendrogram** facilitates finding an appropriate basis for interpretation
 - classical statistical analysis can be applied to coordinates

V. Pawlowsky-Glahn and J. J. Egozcue

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●