EJERCICIO 3

ANÁLISIS DE UNA VIGA PLANA CONTINUA

 $I = 0.083333 \text{ ft}^4$ $E = 210 \text{ K-ft}^2$

• Objetivos

y x

- Analizar vigas con GID-PAEF.
- Emplear el preprocesador gráfico para definir la geometría, propiedades, elementos y cargas.
- Realizar un análisis lineal con el modelo.
- > Manejar el postprocesador gráfico para analizar los resultados.

• Descripción del modelo

La información relevante se presenta junto a la figura. También se muestra el origen del sistema de referencia, localizado en la orilla izquierda. Cada nodo tiene seis grados de libertad, tres desplazamientos y tres rotaciones.

GID

• Preprocesamiento

 El primer paso será generar la geometría del modelo. Se puede hacer directamente mediante

UTILITIES|GRAPHICAL|COORDINATES WINDOW GEOMETRY|CREATE|POINT

👖 Coordinates window 🔀		
C. System:	Cartesian 💻	
Local axes:	-Global- 💻	
x 0.00000		
y: 0.00000		
z: 0.00000		
New point: Ask Change		
Use 'tab Shift-tab and Return'		
<u>Apply</u> <u>Close</u>		

En la ventana resultante se proporcionan las coordenadas del primer nodo y se presiona APPLY. Se continúa esta secuencia con los otros nodos y para terminar se presiona CLOSE.

La otra opción, en lugar de emplear la ventana de coordenadas es darlas directamente en la ventana COMMAND, en la parte inferior de la pantalla. La lista de coordenadas en ft es:

Nodo	Х	у	Z
1	0	0	0
2	10	0	0
3	20	0	0
4	50	0	0

Se generan líneas entre los puntos:

GEOMETRY|CREATE|LINE (MOUSE BOT. DER)|CONTEXTUAL|JOIN C-A

Se generan las líneas al seleccionar los puntos.

Giď

y x

Se selecciona el programa de análisis:

DATA|PROBLEM TYPE|PAEF

A continuación es necesario crear las restricciones a los desplazamientos en los apoyos. Se restringen los tres desplazamientos y la rotación ROTY del punto 1 y el desplazamiento vertical y fuera del plano para los otros apoyos.

 \succ Esto se logra mediante

DATA|CONDITIONS|POINT-CONSTRAINTS

📶 Conditions 🛛 🛛 🔀	📶 Conditions 🛛 🛛 🔀
$\bullet \setminus \Im \otimes$	
Point-Constraints 🗾 🖉	Point-Constraints 🗾 🥑
☑ DOFX	🗖 DOFX
DOFXValue 0.0	DOFXValue 0.0
🔽 DOFY	🔽 DOFY
DOFY Value 0.0	DOFY Value 0.0
🔽 DOFZ	🔽 DOFZ
DOF Z Value 0.0	DOF Z Value 0.0
🔽 DOF RX	🗖 DOF RX
DOF RX Value 0.0	DOF RX Value 0.0
🗖 DOF RY	🗖 DOF RY
DOF RY Value 0.0	DOF RY Value 0.0
🗖 DOF RZ	🗖 DOF RZ
DOF RZ Value 0.0	DOF RZ Value 0.0
<u>Assign</u> <u>Entities</u> <u>D</u> raw <u>U</u> nassign	<u>Assign</u> <u>Entities</u> <u>D</u> raw <u>U</u> nassign
	Close

y z x

> A continuación se genera el momento puntual mediante:

DATA|CONDITIONS|POINT-MOMENTS

Se asignan los valores al punto 1:

GiD

Conditions	$\mathbf{\times}$
	ŋ
Point-Moments	-21
Mom About X 0.0	
Mom About Y 0.0	
Mom About Z 30	
<u>Assign</u> Entities <u>D</u> raw <u>U</u> nassign	
Close	

Sigue la carga puntual mediante:

DATA|CONDITIONS|POINT-LOADS

Se asignan los valores al punto 2:

Conditions		
• / 7 🕸		
Point-Loads	- 🥏	
Force X 0.0		
Force Y -50		
Force Z 0.0		
<u>Assign</u> <u>Entities</u> <u>D</u> raw	<u>U</u> nassign	
Close		

> Finalmente se asigna la carga distribuidal mediante:

DATA|CONDITIONS|LINE-LOADS

Se asignan los valores a la línea que tiene carga distribuida:

Conditions	X	
• < 7 🕸		
Line-Loads	- 🥏	
Element Type	Truss-Frame	
Acceleration		
Intensity Value	0.0, -2.4, 0.0	
Intensity Origin	0.0, 0.0, 0.0	
Intensity Direction	1.0, 0.0, 0.0	
Slopes	0.0, 0.0, 0.0	
Reference System	Global 💻	
<u>Assign</u> <u>Entities</u>	<u>D</u> raw <u>U</u> nassign	
Close		

Ahora se generan las tablas de propiedades de los materiales que se asociarán a los elementos estructurales. La tabla se genera mediante

DATA|MATERIALS|LINEAR STRUCTURAL ELEMENTS

Se emplea la plantilla de materiales: FRAME con los valores relevantes para vigas únicamente.

y x

GiD

🚻 Linear structural ele 🔀	📶 Linear structural ele 🛛	📶 Linear structural ele 🔀
Frame 💽 🧭 🏷 🗶 🕗	Framel 🔄 🧭 🏷 💢 🔁	Frame 💽 🧭 🏷 🗶 🗐
Base properties Y axis 📢	operties Y axis definition	efinition Elastic material
Area 1.0	Y AXIS DRIGIN (0.0, 0.0, 0.0 Y AXIS DIRECTION (0.0, 1.0, 0.0	nu 0.3
lyy 0.01 Izz 0.0833		
lyz 0.0 Jzz 1.0		
Shear factor y 0.833		
Shear factor z 0.833		
Z Centroid 0.0		
Y ShearCtr 0.0		
Z ShearCtr 0.0		
Y LoadCtr 0.0		
∠ LoadUtr 0.0		
Assign Draw Unassign Import/Expo	Assign Draw Unassign Import/Expo	Assign Draw Unassign Import/Expo
Close	Close	Close

Se asigna este juego de propiedades a las líneas presionando ASSIGN.

Se asignan los parámetros generales del problema, Para vigas se aplica GENERAL COMBINATION para element combinations.

📶 Problem Data		×
		2
Problem name	Name	
🔲 Reopen Database		
Element combinations	General con	nbination 😐
Solution Procedure	1 L	Linear static 📃
Equations	Symmetric	
Output to file		
Output data	Gauss Pts	_
From Interval	1	
To Interval	1	
Step Interval	1	

Los resultados (OUTPUT DATA) deben pedirse en los puntos de Gauss para obtener resultados en las vigas. Los datos se capturan presionando ACCEPT.

Se define el tipo de elementos que se usarán:

MESHING|ELEMENT TYPE|LINEAR|LINES

Se seleccionan todas las líneas.

Se fija el número de elementos.

MESHING | STRUCTURED | LINES

En el menú que aparece se define el número de elementos que se requiere generar sobre cada línea. En este caso seleccionamos 5, 5 y 10 sobre las líneas.

➤ La malla se genera mediante

MESHING|GENERATE

El modelo está completo.

y x

GiD

• Análisis estructural

El análisis LOCAL se ejecuta mediante:

CALCULATE | CALCULATE WINDOW

Se presiona el botón START

Si se quiere ver el archivo de salida, que se genera durante el proceso, basta con apretar el botón: OUTPUT VIEW.

Postprocesamiento

- El objetivo es visualizar la estructura deformada y la distribución de fuerzas axiales en las barras.
- Se entra al postprocesador mediante

FILES | POSTPROCESS

O mediante el ícono correspondiente:

Para ver la deformada seleccionen:

VIEW RESULTS| DEFORMATION| DISPLACEMENT VIEW RESULTS| CONTOUR FILL| DISPLACEMENT| V

> Para ver la rotación se puede emplear un LINE DIAGRAM:

VIEW_RESULTS| LINE_DIAGRAM| SCALAR| ROTATION| ROTZ

Y mostrar los resultados en los apoyos mediante

LABEL| SELECT| RES

> Para ver las fuerzas cortantes en los elementos seleccione:

VIEW RESULTS| LINE DIAGRAM| SCALAR| BEAM SHEAR VY

> Para ver los momentos flexionantes en los elementos seleccione:

y z x

VIEW RESULTS| LINE DIAGRAM| SCALAR| BEAM MOM Z

FILES| POSTPROCESS FILES| QUIT

y z x