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1. Components of a Continuous 
G ti  Alg ithGenetic Algorithm

The flowchart in figure1 provides a big picture overview of a continuous GA..

Figure 1. Flowchart of a continuous GA.



1.1. The Example Variables and Cost 
F tiFunction

The goal is to solve some optimization problem where we search for an optimal
(minimum) solution in terms of the variables of the problem Therefore we begin(minimum) solution in terms of the variables of the problem. Therefore we begin
the process of fitting it to a GA by defining a chromosome as an array of variable
values to be optimized. If the chromosome as Nvar variables given by p1, p2, …,pNvar
then the chromosome is written as an array with 1 x Nvar elements so that:y var

h h bl l d fl b h

[ ]1 2 3 varchromosome , , ,... Np p p p=

In this case, the variable values are represented as floating point numbers. Each
chromosome has a cost found by evaluating the cost function f at the variables p1,
p2,…,pNvar.

Last two equations along with applicable constraints constitute the problem to be

1 2 varcost ( ) ( , ,..., )Nf chromosome f p p P= =

q g pp p
solved.



Example

Consider the cost function

cos ( , ) sin(4 ) 1.1 sin(2 )t f x y x x y y= = +

Subject to 0 10
0 10
x
y
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≤ ≤

Since f is a function of x and y only, the clear choice for the variable is:

y

with Nvar=2.

[ ]chromosome ,x y=



1.2. Variable Encoding, Precision, and 
B dBounds

We no longer need to consider how many bits are necessary to accurately
represent a value Instead x and y have continuous values that fall between therepresent a value. Instead, x and y have continuous values that fall between the
bounds.

When we refer to the continuous GA, we mean the computer uses its internal
precision and round off to define the precision of the value Now the algorithm isprecision and round off to define the precision of the value. Now the algorithm is
limited in precision to the round off error of the computer.

Since the GA is a search technique, it must be limited to exploring a reasonable
region of variable space Sometimes this is done by imposing a constraint on theregion of variable space. Sometimes this is done by imposing a constraint on the
problem. If one does not know the initial search region, there must be enough
diversity in the initial population to explore a reasonably sized variable space
before focusing on the most promising regions.before focusing on the most promising regions.



1 3  Initial Population1.3. Initial Population
To begin the GA, we define an initial population of Npop chromosomes. A matrix
represents the population with each row in the matrix being a 1 x N arrayrepresents the population with each row in the matrix being a 1 x Nvar array
(chromosome) of continuous values. Given an initial population of Npop
chromosomes, the full matrix of Npop x Nvar random values is generated by:

d( )N N

All values are normalized to have values between 0 and 1, the range of a uniform
random number generator. The values of a variable are “unnormalized” in the cost

varpop rand( , )popN N=

g
function. If the range of values is between plo and phi, then the unnormalized values
are given by:

( )hi l lp p p p p= − +
Where

plo: lowest number in the variable range

hi h b i h i bl

( )hi lo norm lop p p p p+

phi: highest number in the variable range

pnorm: normalized value of variable



This society of chromosomes is not a democracy: the individual chromosomes are 
not all created equal. Each one’s worth is assessed by the cost function. So at this 
point, the chromosomes are passed to the cost function for evaluating.

Figure 2. Contour plot of the cost function with the initial population (Npop=8) indicated by large dots.



Table 1. Example Initial population of 8 random chromosomes and their corresponding cost.



1 4  Natural Selection1.4. Natural Selection
Now is the time to decide which chromosomes in the initial population are fit
enough to survive and possibly reproduce offspring in the next generation As doneenough to survive and possibly reproduce offspring in the next generation. As done
for the binary version of the algorithm, the Npop costs and associated chromosomes
are ranked from lowest cost to highest cost. The rest die off. This process of natural
selection must occur at each iteration of the algorithm to allow the population ofg p p
chromosomes to evolve over the generations to the most fit members as defined by
the cost function. Not all the survivors are deemed fit enough to mate. Of the Npop
chromosomes in a given generation, only the top Nkeep are kept for mating and theg g y p g
rest are discarded to make room for the new offspring.



Table 2. Surviving chromosomes after 50% selection rate.



1 5  Pairing1.5. Pairing
The Nkeep=4 most fit chromosomes form the mating pool. Two mothers and fathers
pair in some random fashion Each pair produces two offspring that contain traitspair in some random fashion. Each pair produces two offspring that contain traits
from each parent. In addition the parents survive to be part of the next generation.
The more similar the two parents, the more likely are the offspring to carry the
traits of the parents.p

Table 3. Pairing and mating process of single-point crossover chromosome family binary string cost.



1 6  Mating1.6. Mating
As for the binary algorithm, two parents are chosen, and the offspring are some
combination of these parentscombination of these parents.

The simplest methods choose one or more points in the chromosome to mark as
the crossover points. Then the variables between these points are merely swapped
between the two parents For example purposes consider the two parents to be:between the two parents. For example purposes, consider the two parents to be:

[ ]
[ ]

1 1 2 3 4 5 6 var

2 1 2 3 4 5 6 var

, , , , , ,...,

, , , , , ,...,
m m m m m m mN

d d d d d d dN

parent p p p p p p p

parent p p p p p p p

=

=
0

Crossover points are randomly selected, and then the variables in between are
exchanged:

[ ]2 1 2 3 4 5 6 var, , , , , , ,d d d d d d dNp p p p p p p p

1 1 2 3 4 5 6 var, , , , , ,...,m m d d m m mNoffspring p p p p p p p↑ ↑⎡ ⎤= ⎣ ⎦

The extreme case is selecting Nvar points and randomly choosing which of the two

1 1 2 3 4 5 6 var

2 1 2 3 4 5 6 var

, , , , , , ,

, , , , , ,...,
m m d d m m mN

d d m m d d dN

ff p g p p p p p p p

offspring p p p p p p p
↑ ↑

↑ ↑

⎣ ⎦
⎡ ⎤= ⎣ ⎦

parents will contribute its variable at each position. Thus one goes down the line of
the chromosomes and, at each variable, randomly chooses whether or not to swap
the information between the two parents.



This method is called uniform crossover:

[ ]ff i

Th bl ith th i t th d i th t i f ti i
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2 1 2 3 4 5 6 var

, , , , , ,...,

, , , , , ,...,
m d d d d m dN

d m m m m d mN

offspring p p p p p p p

offspring p p p p p p p

=
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The problem with these point crossover methods is that no new information is
introduced: Each continuous value that was randomly initiated in the initial
population is propagated to the next generation, only in different combinations.
Although this strategy work fine for binary representations there is now aAlthough this strategy work fine for binary representations, there is now a
continuum of values, and in this continuum we are merely interchanging two data
points. These approaches totally rely on mutation to introduce new genetic
material.

The blending methods remedy this problem by finding ways to combine variable
values from the two parents into new variable values in the offspring. A single
offspring variable value, p , comes from a combination of the two correspondingp g , pnew, p g
offspring variable values:

(1 )new mn dnp p pβ β= + −( )new mn dnp p pβ β



Where:

β: random number on the interval [0,1]β [ , ]

pmn: nth variable in the mother chromosome

pdn: nth variable in the father chromosome

The same variable of the second offspring is merely the complement of the first. If
β=1, the pmn propagates in its entirety and pdn dies. In contrast, if β=0, then pdn

i i i d di Wh β 0 5 h l i f hpropagates in its entirety and pmn dies. When β=0.5, the result is an average of the
variables of the two parents. Choosing which variables to blend is the next issue.
Sometimes, this linear combination process is done for all variables to the right or
to the left of some crossover point Any number of points can be chosen to blendto the left of some crossover point. Any number of points can be chosen to blend,
up to Nvar values where all variables are linear combination of those of the two
parents. The variables can be blended by using the same β for each variable or by
choosing different β’s for each variable.choosing different β s for each variable.

However, they do not allow introduction of values beyond the extremes already
represented in the population. Top do this requires an extrapolating method. The
simplest of these methods is linear crossover.simplest of these methods is linear crossover.



In this case three offspring are generated from the two parents by:

1 0.5 0.5pnew pmn pdn= +0.5 0.5
2 1.5 0.5

3 0.5 1.5

pnew pmn pdn
pnew pmn pdn
pnew pmn pdn

= −
= − +

Any variable outside the bounds is discarded in favor of the other two. Then the
best two offspring are chosen to propagate. Of course, the factor 0.5 is not the
only one that can be used in such a method. Heuristic crossover is a variation

βwhere some random number, β, is chosen on the interval [0,1] and the variables of
the offspring are defined by:

( )new mn dn mnp p p pβ= − +

Variations on this theme include choosing any number of variables to modify and
generating different β for each variable. This method also allows generation of
offspring outside of the values of the two parent variables If this happens theoffspring outside of the values of the two parent variables. If this happens, the
offspring is discarded and the algorithm tries another β. The blend crossover
method begins by choosing some parameter α that determines the distance outside
the bounds of the two parent variables that the offspring variable may lie. Thisg
method allows new values outside of the range of the parents without letting the
algorithm stray too far.



The method used for us is a combination of an extrapolation method with a
crossover method. We want to find a way to closely mimic the advantages of the
binary GA mating scheme. It begins by randomly selecting a variable in the first
pair of parents to be the crossover point:

{ }roundup random*Nα =

We’ll let

{ }varroundup random Nα =

1 1 2 var[ ... ... ]m m m mNparent p p p pα=

Where the m and d subscripts discriminate between the mom and the dad parent.
Th h l d i bl bi d f i bl h ill i

2 1 2 var[ ... ... ]d d d dNparent p p p pα=

Then the selected variables are combined to form new variables that will appear in
the children:

1

2

[ ]
[ ]

new m m d

d d

p p p p
p p p p

α α αβ
β

= − −

= + −

Where β is also a random value between 0 and 1. The final step is to complete the
crossover with the rest of the chromosome as before:

2 [ ]new d m dp p p pα α αβ+

1 1 2 1 var

2 1 2 2 var

[ ... ... ]
[ ... ... ]

m m new dN

d d new mN

offspring p p p p
offspring p p p p

=

=



If the first variable of the chromosomes is selected, then only the variables to the
right to the selected variable are swapped. If the last variable of the chromosomes
is selected, then only the variables to the left of the selected variable are swapped.
This method does not allow offspring variables outside the bounds set by the
parent unless β >1.

For our example problem, the first set of parents are given by

[0 1876 8 9371]chromosome =

A d b l h l i f h Th d

2

3

[0.1876,8.9371]
[2.6974,6.2647]

chromosome
chromosome

=
=

A random number generator selects p1 as the location of the crossover. The random
number selected for β is β=0.0272. the new offspring are given by

1 [0.18758 0.0272 0.18758 0.0272 2.6974,6.2647]offspring = − × + ×1 [ , ]
                 =[0.2558,6.2647]

[2 6974 0 0272 0 18758 0 0272 2 6974 8 9371]

ff p g

offspring = + × − ×2 [2.6974 0.0272 0.18758 0.0272 2.6974,8.9371]
                 =[2.6292,8.9371]
offspring = + × ×



Continuing this process once more with a β=0.7898. The new offspring are given
by

3 [2.6974 0.7898 2.6974 0.7898 7.7246,6.2647]
                 =[6.6676,5.5655]
offspring = − × + ×

4 [7.7246 0.7898 2.6974 0.7898 7.7246,8.9371]
                 =[3.7544,6.2647]
offspring = + × − ×



1 7  Mutations1.7. Mutations
To avoid some problems of overly fast convergence, we force the routine to
explore other areas of the cost surface by randomly introducing changes orexplore other areas of the cost surface by randomly introducing changes, or
mutations, in some of the variables.
0

As with the binary GA, we chose a mutation rate of 20%. Multiplying the
mutation rate by the total number of variables that can be mutated in the
population gives 0.20 x 7 x 2≈3 mutations. Next random numbers are chosen to
select the row and the columns of the variables to be mutated. A mutated variable
i l d b d i bl Th f ll i i d l l t dis replaced by a new random variable.The following pairs were randomly selected:

[4 4 7]
[1 2 1]

mrow
mcol

=
=

The first random pair is (4,1). Thus the value in row 4 and column 1 of the
population matrix is replaced with a uniform random number between 1 and 10:

5.6130 9.8190⇒



Mutations occur two more times. The first two columns in table 4 show the
population after mating. The next two columns display the population after
mutation.Associated costs after the mutations appear in the last column.

Table 4. Mutating the population.



Figure 3 shows the distribution of chromosomes after the first generation.

Figure 3. Contour plot of the cost function with the population after the first generation.



Most users of the continues GA add a normally distributed random number to the
variable selected for mutation:

Where

' (0,1)n n np p Nσ= +

Where

σ: standard deviation of the normal distribution

Nn(0,1): standard normal distribution (mean=0 and variance=1)



1 8  The Next Generation1.8. The Next Generation
The process described is iterated until an acceptable solution is found. For our
example the starting population for the next generation is shown in table 5 afterexample, the starting population for the next generation is shown in table 5 after
ranking. The population at the end of generation 2 is shown in table 6. Table 7 is the
ranked population at the beginning of the generation 3. After mating mutation and
ranking, the final population after three generations is shown in table 8 and figureg, p p g g
4.

Table 5. New ranked population at the start of the second generation.



Table 6. Population after crossover and mutation in the second generation.

Table 7. New ranked population at the start of the third generation.



Table 8. Ranking of generation 3 from least to most cost.

Figure 4. Contour plot of the cost function with the population after the second generation.



1 9  Convergence1.9. Convergence
This run of the algorithm found the minimum cost (-18.53) in three generations.
Members of the population are shown as large dots on the cost surface contourMembers of the population are shown as large dots on the cost surface contour
plot in figures 2 and 5. By the end of the second generation, chromosomes are in
the basins of the four lowest minima on the cost surface.The global minimum of

18 5 is found in generation 3 All but two of the population members are in the-18.5 is found in generation 3. All but two of the population members are in the
valley of the global minimum in the final generation. Figure 6 is a plot of the mean
and minimum cost of each generation.



Fi  5  C t  l t f th  t f ti  ith th  l ti  ft  th  thi d d fi l tiFigure 5. Contour plot of the cost function with the population after the third and final generation.



Figure 6. Plot of the minimum and mean costs as a function of generation. The algorithm converged in 
three generations



2  A Parting Look2. A Parting Look
The binary GA could have been used in this example as well as a continuous GA.
Since the problem used continuous variables it seemed more natural to use theSince the problem used continuous variables, it seemed more natural to use the
continuous GA.
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