Analysis of Polyconvex Envelopes of Polynomial Expressions

R. Meziat Departamento de Matemáticas Universidad de los Andes ICOTA-6 Ballarat, 2004

The author thanks: Research Grant 1204-05-13627, CT 282-2003, COLCIENCIAS

Introduction (1/2)

- Functionals of the form: $I(u) = \iint_{\Omega} \{ \phi(x, y; \nabla u) + \psi(x, y; u) \} dx dy$
- Admissible functions are displacement vector fields:

$$u:\Omega\to R^2$$

Subject to particular contour conditions:

$$u = g$$
 in $\partial \Omega$

Introduction (2/2)

• The gradient of *u* is a deformation matrix:

$$\vec{\nabla}u = \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{\partial u_1}{\partial y} \\ \frac{\partial u_2}{\partial x} & \frac{\partial u_2}{\partial y} \end{pmatrix}$$

Therefore, the energy potential is dependent on a 2x2 matrix:

$$\phi = \phi(A) \qquad A \in R^{2x^2}$$

\$\phi\$ is polyconvex if it depends on a convex way from matrix A and its determinant:

$$\phi(A) = h(A, \det A)$$

Polyconvexity (1/3)

- Polyconvexity was introduced by Ball in 1977*
- A function $f : \mathbb{R}^5 \to \mathbb{R}$ is polyconvex if there exists a convex function $h : \mathbb{R}^5 \to \overline{\mathbb{R}}$ such that $\phi(A) = h(T(A))$

where $T : \mathbb{R}^5 \to \overline{\mathbb{R}}$ is dependent of the determinant of A and the components of A:

 $T(A) = T(A, \det(A))$

* Dacorogna, B., *Direct methods in The Calculus of Variations*, Springer-Verlag, 1989. Pedregal, P., *Variational Methods in Nonlinear Elasticity*, SIAM, 2000.

ICOTA-6, Ballarat, 2004

Polyconvexity (2/3)

- Some properties of polyconvexity:
 - \Box If ϕ is convex, then it is polyconvex
 - \Box When ϕ is a quadratic form it is polyconvex if and only if there exists a constant c such that:

 $\phi(A) \ge c \det(A)$

□ When *g* is a convex function where $g(0) = \min\{g(x) : x \ge 0\}$ then, the following is a polyconvex function:

$$\phi(A) = g(\|A\|_2)$$

□ When $1 \le \alpha \le 3$ and *g* is a real convex function, the following is polyconvex:

$$\phi(A) = \|A\|_2^{\alpha} + g(\det A)$$

Polyconvexity (3/3)

If f is polyconvex in

$$\min_{u} \iint_{\Omega} f(x, y, u, \vec{\nabla}u) \, dx \, dy$$

for every point (*x*,*y*) the existence of minimizers is assured

- Otherwise the polyconvex envolvent of *f* must be considered
- Is this approach to admit a formulation of semidefinite relaxations when f is described by polynomials?

Polyconvex Envolvents (1/6)

- The estimation of the polyconvex envolvent of a polynomial potential \u03c6 admits a formulation in terms of semidefinite programs
- The polyconvex envolvent is the bigger polyconvex functions that bounds \u03c6 from below
- Also, the polyconvex envolvent of \u00f6 is not to exceed its convex envolvent:

$$\phi_c \leq \phi_p$$

Polyconvex Envolvents (2/6)

The estimation of the polyconvex envolvent of f for square matrixes of dimension 2 via convex combinations can be such that:

$$\phi_p(A) = \min \sum_{i=1}^6 \lambda_i \phi(A^i)$$

Where all convex combinations of six terms are considered that involucrate matrixes Aⁱ of dimension 2x2 such that:

$$\sum_{i=1}^{6} \lambda_i A^i = A, \quad \sum_{i=1}^{6} \lambda_i \det(A^i) = \det(A)$$

Polyconvex Envolvents (3/6)

Every convex combination can be replaced by a probability distribution in the 2x2 matrix space, such that the estimation of the polyconvex envolvent of function \u03c6 in the matrix A is

$$\phi_p(A) = \min \iiint_{Q \in R^4} \phi(Q) d\mu(Q)$$

s.t. $A = \iiint_{Q \in R^4} Q d\mu(Q),$
$$\det(A) = \iiint_{Q \in R^4} \det(Q) d\mu(Q)$$

Polyconvex Envolvents (4/6)

• If function ϕ has polynomial structure

$$\phi(A) = \phi(x_1, x_2, x_3, x_4) = \sum_{0 \le i+j+k+l \le 2n} c_{ijkl} x_1^i x_2^j x_3^k x_4^l$$

where $A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$.

Polyconvex Envolvents (5/6)

The polyconvex envolvent estimation can be written as an optimization problem in measure as the mathematical program:

$$\phi_p(A) = \min_{m} \sum_{0 \le i+j+k+l \le 2n} c_{ijkl} m_{ijkl}$$

s.t.
$$A = \begin{pmatrix} m_{1000} & m_{0100} \\ m_{0010} & m_{0001} \end{pmatrix},$$
$$det(A) = m_{1000} m_{0001} - m_{0010} m_{0100}$$

René Meziat

Polyconvex Envolvents (6/6)

In which the design variables m_{ijkl} must represent the algebraic moments of a probability measure in R⁴. This implies an additional restriction in the form of a matrix inequality

$$m_{ijkl} = \int x_1^i x_2^j x_3^k x_4^l d\mu(x_1^i, x_2^j, x_3^k, x_4^l)$$

The restriction matrixes must be semidefinite positive

Restriction Matrixes (1/2)

Given the functions following functions $x_1^i x_2^j x_3^k x_4^l$ where $0 \le i + j + k + l \le n$ they are written as a list in the first row and column of a table

To fill every position in the matrix multiply every element of the first row and the first column between them: $x_1^{i+i'}x_2^{j+j'}x_3^{k+k'}x_4^{l+l'}$ where $0 \le i + j + k + l \le n$ $0 \le i' + j' + k' + l' \le n$

	1	x_1		x_4	x_{1}^{2}		x_{4}^{2}	$x_1 x_2$		$x_{3}x_{4}$
1	1	x_1		x_4	x_{1}^{2}		x_{4}^{2}	$x_1 x_2$		$x_{3}x_{4}$
x_1	x_1	x_{1}^{2}		x_1x_4	x_{1}^{3}		$x_1 x_4^2$	$x_{1}^{2}x_{2}$		$x_1 x_3 x_4$
÷	:	÷	÷	÷	:	÷	÷	:	:	:
x_4	x_4	$x_1 x_4$		x_{4}^{2}	$x_{1}^{2}x_{4}$		x_{4}^{3}	$x_1 x_2 x_4$		$x_3 x_4^2$
x_{1}^{2}	x_{1}^{2}	x_{1}^{3}		$x_{1}^{2}x_{4}$	x_1^4		$x_1^2 x_4^2$	$x_{1}^{3}x_{2}$		$x_1^2 x_3 x_4$
÷	:	:	÷	:	:	÷	:	:	÷	:
x_{4}^{2}	x_{4}^{2}	$x_1 x_4^2$		x_{4}^{3}	$x_1^2 x_4^2$		x_4^4	$x_4^2 x_1 x_2$		$x_{4}^{3}x_{3}$
$x_1 x_2$	$x_1 x_2$	$x_{1}^{2}x_{2}$		$x_1 x_2 x_4$	$x_1^3 x_2$		$x_4^2 x_1 x_2$	$x_1^2 x_2^2$		$x_1 x_2 x_3 x_4$
÷	:	÷	÷	:	:	÷	:	:	÷	:
$x_3 x_4$	$x_{3}x_{4}$	$x_1 x_3 x_4$		$x_3 x_4^2$	$x_1^2 x_3 x_4$		$x_{4}^{3}x_{3}$	$x_1 x_2 x_3 x_4$		$x_3^2 x_4^2$

ICOTA-6, Ballarat, 2004

René Meziat

Restriction Matrixes (2/2)

 Change the functions for their respective moment x₁ⁱx₂^jx₃^kx₄^l → m_{ijkl}
The resulting matrix must be semidefinite positive

	$\begin{bmatrix} m_{0000} \\ m_{1000} \end{bmatrix}$	m_{1000} m_{2000}	 	$m_{0001} \\ m_{1001}$	$m_{2000} \ m_{3000}$	 	$m_{0002} \\ m_{1002}$	$m_{1100} \\ m_{2100}$	 	$m_{0011} \\ m_{1011}$
		÷	÷	÷	÷	÷	÷	÷	÷	:
	m_{0001}	m_{1001}		m_{0002}	m_{2001}		m_{0003}	m_{1101}		m_{0012}
M =	m_{2000}	m_{3000}		m_{2001}	m_{4000}		m_{2002}	m_{31000}		m_{2011}
	:	÷	÷	÷	÷	÷	÷	÷	÷	:
	m_{0002}	m_{2100}		m_{1101}	m_{3100}		m_{1102}	m_{22000}		m_{1111}
	:	÷	÷	÷	÷	÷	÷	÷	÷	÷
	m_{0011}	m_{1011}		m_{0012}	m_{2011}		m_{0013}	m_{1111}		m_{0022}

René Meziat

Polyconvex Env. Conclusion

To find the polyconvex envolvent of a function solve the semidefinite program in the standar form:

Minimize $\sum_{0 \le i+j+k+l \le 4} c_{ijkl} m_{ijkl}$

s.t. $R + M_2 \ge 0$,

$$a_1 a_4 - a_2 a_3 = m_{1001} - m_{0110},$$

$$m_{0000} = 1$$

	0	$0 \\ m_{2000}$	 	$0 \\ m_{1001}$	$m_{2000} \ m_{3000}$	 	$m_{0002} \ m_{1002}$	$m_{1100} \ m_{2100}$	 	$m_{0011} \\ m_{1011}$
	:	÷	÷	÷	÷	÷	÷	÷	÷	:
	0	m_{1001}		m_{0002}	m_{2001}		m_{0003}	m_{1101}		m_{0012}
$M_2 =$	m_{2000}	m_{3000}		m_{2001}	m_{4000}		m_{2002}	m_{31000}		m_{2011}
-	:	÷	÷	÷	÷	÷	÷	÷	÷	:
	m_{0002}	m_{2100}		m_{1101}	m_{3100}		m_{1102}	m_{22000}		m_{1111}
	:	÷	÷	÷	÷	÷	÷	÷	÷	:
	m_{0011}	m_{1011}		m_{0012}	m_{2011}		m_{0013}	m_{1111}		m_{0022}

Example 1 (1/2)
$$\phi(A) = (1 - \det(A)^2)^2$$

As instance take

$$\phi(A) = \left(1 - \det(A)^2\right)^2$$
$$A = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$

An 8th degree polynomial, this implies a 70x70 restriction matrix.

Example 1 (2/2) $\phi(A) = (1 - \det(A)^2)^2$

 The polyconvex envolvment is calculated at

$$A = \begin{bmatrix} 1 & 0.1 \\ 0.5 & 0.3 \end{bmatrix}$$

The value of the polyconvex envolvent at this point is $\phi_c(A)=0.1$ $(\phi(A)=0.8789)$

Moment	Value								
m_{2000}	1.6119	m_{1100}	0.5581	m_{0310}	0.0782	m_{2201}	0.2453	m_{2310}	0.0831
m_{1010}	0.1116	m_{2100}	0.7376	m_{0301}	0.1589	m_{1211}	0.0283	m_{2301}	0.1899
m_{2010}	0.1430	m_{3100}	0.9064	m_{0400}	1.8542	m_{1202}	0.3127	m_{2400}	2.4029
m_{3010}	0.1750	m_{0110}	0.0732	m_{4010}	0.2301	m_{2300}	0.7326	m_{1050}	0.1001
m_{0020}	0.7531	m_{1110}	0.0842	m_{3020}	0.7846	m_{1310}	0.0828	m_{1041}	0.0857
m_{1020}	0.4889	m_{2110}	0.0944	m_{2030}	0.1230	m_{1301}	0.1636	m_{1032}	0.0413
m_{2020}	1.0382	m_{0120}	0.1910	m_{1040}	0.5653	m_{1400}	0.8929	m_{1023}	0.0781
m_{0030}	0.1027	m_{1120}	0.1789	m_{5000}	3.3920	m_{0050}	0.1309	m_{1014}	0.0611
m_{1030}	0.0980	m_{0130}	0.0762	m_{4001}	0.6785	m_{0041}	0.1366	m_{1140}	0.1396
m_{0040}	1.5515	m_{0101}	0.1741	m_{3011}	0.1042	m_{0032}	0.0511	m_{1131}	0.4134
m_{4000}	3.3459	m_{1101}	0.1975	m_{2021}	0.1260	m_{0023}	0.1304	m_{1122}	0.0428
m_{1001}	0.3232	m_{2101}	0.2427	m_{1031}	0.0649	m_{0014}	0.0659	m_{1113}	0.4358
m_{2001}	0.4216	m_{0111}	0.0775	m_{3002}	0.8144	m_{0140}	0.1791	m_{1230}	0.0717
m_{3001}	0.5161	m_{1111}	0.2035	m_{2012}	0.0859	m_{0131}	0.0947	m_{1221}	0.0382
m_{0011}	0.0564	m_{0121}	0.0407	m_{1022}	0.2142	m_{0122}	0.0772	m_{1212}	0.0216
m_{1011}	0.0716	m_{0102}	0.2473	m_{2003}	0.3183	m_{0113}	0.1086	m_{1320}	0.1896
m_{2011}	0.0752	m_{1102}	0.2292	m_{1013}	0.0896	m_{0230}	0.0796	m_{1311}	0.3985
m_{0021}	0.1210	m_{0112}	0.0446	m_{1004}	0.4346	m_{0221}	0.0640	m_{1410}	0.0727
m_{1021}	0.0970	m_{0103}	0.1294	m_{4100}	1.2210	m_{0212}	0.0303	m_{5020}	1.2329
m_{0031}	0.0491	m_{0200}	0.9755	m_{3110}	0.1209	m_{0320}	0.2319	m_{4030}	0.1736
m_{0002}	0.7887	m_{1200}	0.7487	m_{2120}	0.2313	m_{0311}	0.0869	m_{3040}	0.7066
m_{1002}	0.4960	m_{2200}	1.3631	m_{1130}	0.0827	m_{0410}	0.0820	m_{2050}	0.1240
m_{2002}	0.9152	m_{0210}	0.0689	m_{3101}	0.2989	m_{0104}	0.2371	m_{6010}	0.3678
m_{0012}	0.0645	m_{1210}	0.0677	m_{2111}	0.0716	m_{0203}	0.1803	m_{5011}	0.1606
m_{1012}	0.0673	m_{0220}	0.6000	m_{1121}	0.0359	m_{0302}	0.2641	m_{4021}	0.1797
m_{0022}	0.7093	m_{0201}	0.2068	m_{2102}	0.3039	m_{0401}	0.2285	m_{3031}	0.0787
m_{0003}	0.2850	m_{1201}	0.1961	m_{1112}	0.0484	m_{0500}	0.8283	m_{2041}	0.1058
m_{1003}	0.2407	m_{0211}	0.0304	m_{1103}	0.1329	m_{0005}	0.3691	m_{4012}	0.1363
m_{0013}	0.0659	m_{0202}	0.8004	m_{3200}	1.1868	m_{5010}	0.2801	m_{3022}	0.2813
m_{0004}	1.5301	m_{0300}	0.5851	m_{2210}	0.0787	m_{4020}	2.3482	m_{2032}	0.0519
m_{3000}	1.8111	m_{1300}	0.5640	m_{1220}	0.3025	m_{3030}	0.1349	m_{3013}	0.1354

Example 2 (1/2) $\phi(A) = (1 + \det(A)^2)^2$

As instance take

$$\phi(A) = \left(1 + \det(A)^2\right)^2$$
$$A = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$

- An 8th degree polynomial, this implies a 70x70 restriction matrix.
- This polynomial is polyconvex by definition

Example 2 (2/2) $\phi(A) = (1 + \det(A)^2)^2$

The polyconvex envolvment is calculated at

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

The value of the polyconvex envolvent at this point is \u03c6_c(A)=1 (\u03c6(A)=1)

Moment	Value	Moment	Value
m_{0200}	3,383e + 003	m_{1210}	1,097e + 005
m_{1100}	7,927e + 000	m_{0310}	1,717e + 005
m_{1001}	-4,499e - 008	m_{0211}	-9,163e + 004
m_{0101}	1,428e + 001	m_{0220}	6,307e + 006
m_{0002}	3,426e + 003	m_{2101}	1,097e + 005
m_{2000}	3,372e + 003	m_{1102}	-9,164e + 004
m_{1010}	5,687e + 000	m_{3100}	5,802e + 005
m_{0110}	9,999e - 001	m_{2110}	1,390e + 005
m_{0011}	1,296e + 001	m_{1111}	6,307e + 006
m_{0020}	3,394e + 003	m_{1120}	3,536e + 005
m_{1200}	1,823e + 003	m_{2002}	6,307e + 006
m_{2100}	3,236e + 003	m_{1003}	7,303e + 004
m_{2001}	4,223e + 003	m_{3001}	1,356e + 005
m_{1101}	2,212e + 003	m_{2011}	3,536e + 005
m_{1002}	7,030e + 002	m_{1012}	5,417e + 004
m_{3000}	3,356e + 003	m_{1021}	1,301e + 005
m_{2010}	4,724e + 003	m_{0103}	2,099e + 005
m_{1110}	4,224e + 003	m_{0112}	7,646e + 004
m_{1011}	1,488e + 003	m_{0121}	5,419e + 004
m_{1020}	1,681e + 003	m_{0004}	3,213e + 007
m_{0300}	7,025e + 003	m_{0013}	1,560e + 005
m_{0201}	9,443e + 003	m_{0022}	1,367e + 007
m_{0102}	3,354e + 003	m_{4000}	3,084e + 007
m_{0210}	2,214e + 003	m_{3010}	2,163e + 005
m_{0111}	7,090e + 002	m_{2020}	1,434e + 007
m_{0120}	1,491e + 003	m_{1030}	-4,337e + 004
m_{0012}	5,155e + 003	m_{0130}	1,335e + 005
m_{0021}	9,339e + 003	m_{0031}	2,077e + 005
m_{0030}	1,049e + 004	m_{0040}	3,153e + 007
m_{0003}	2,124e + 004	m_{0301}	-5,593e + 004
m_{0400}	3,126e + 007	m_{0202}	1,427e + 007
m_{1300}	-2,204e+005	m_{2200}	1,412e + 007
m_{1201}	1,684e + 005		