Analysis of Polyconvex Envelopes of Polynomial Expressions

R. Meziat
Departamento de Matemáticas
Universidad de los Andes
ICOTA-6
Ballarat, 2004

The author thanks: Research Grant 1204-05-13627, CT 282-2003, COLCIENCIAS
Introduction (1/2)

- Functionals of the form:
 \[I(u) = \iint_{\Omega} \{ \phi(x, y; \nabla u) + \psi(x, y; u) \} dx \, dy \]

- Admissible functions are displacement vector fields:
 \[u : \Omega \to \mathbb{R}^2 \]

- Subject to particular contour conditions:
 \[u = g \quad \text{in} \quad \partial \Omega \]
Introduction (2/2)

- The gradient of u is a deformation matrix:

$$\nabla u = \begin{pmatrix}
\frac{\partial u_1}{\partial x} & \frac{\partial u_1}{\partial y} \\
\frac{\partial u_2}{\partial x} & \frac{\partial u_2}{\partial y}
\end{pmatrix}$$

- Therefore, the energy potential is dependant on a 2x2 matrix:

$$\phi = \phi(A) \quad A \in R^{2 \times 2}$$

- ϕ is polyconvex if it depends on a convex way from matrix A and its determinant:

$$\phi(A) = h(A, \det A)$$
Polyconvexity (1/3)

- Polyconvexity was introduced by Ball in 1977*
- A function $f : \mathbb{R}^5 \to \mathbb{R}$ is polyconvex if there exists a convex function $h : \mathbb{R}^5 \to \mathbb{R}$ such that

 $$\phi(A) = h(T(A))$$

 where $T : \mathbb{R}^5 \to \mathbb{R}$ is dependant of the determinant of A and the components of A:

 $$T(A) = T(A, \det(A))$$

Polyconvexity (2/3)

Some properties of polyconvexity:

- If ϕ is convex, then it is polyconvex.
- When ϕ is a quadratic form it is polyconvex if and only if there exists a constant c such that:
 $$\phi(A) \geq c \det(A)$$
- When g is a convex function where $g(0) = \min\{g(x) : x \geq 0\}$ then, the following is a polyconvex function:
 $$\phi(A) = g(\|A\|_2)$$
- When $1 \leq \alpha \leq 3$ and g is a real convex function, the following is polyconvex:
 $$\phi(A) = \|A\|_2^\alpha + g(\det A)$$
Polyconvexity (3/3)

- If f is polyconvex in
 \[
 \min_u \iint_{\Omega} f(x, y, u, \nabla u) \, dx \, dy
 \]
 for every point (x, y) the existence of minimizers is assured

- Otherwise the polyconvex envolvent of f must be considered

- Is this approach to admit a formulation of semidefinite relaxations when f is described by polynomials?
Polyconvex Envolvents (1/6)

- The estimation of the polyconvex envolvent of a polynomial potential ϕ admits a formulation in terms of semidefinite programs.
- The polyconvex envolvent is the bigger polyconvex functions that bounds ϕ from below.
- Also, the polyconvex envolvent of ϕ is not to exceed its convex envolvent:

$$\phi_c \leq \phi_p$$
Polyconvex Envolvents (2/6)

- The estimation of the polyconvex envolvent of \(f \) for square matrixes of dimension 2 via convex combinations can be such that:
 \[
 \phi_p(A) = \min \sum_{i=1}^{6} \lambda_i \phi(A^i)
 \]

- Where all convex combinations of six terms are considered that involucrate matrixes \(A^i \) of dimension 2x2 such that:
 \[
 \sum_{i=1}^{6} \lambda_i A^i = A, \quad \sum_{i=1}^{6} \lambda_i \det(A^i) = \det(A)
 \]
Polyconvex Envolvents (3/6)

Every convex combination can be replaced by a probability distribution in the 2x2 matrix space, such that the estimation of the polyconvex envolvent of function ϕ in the matrix A is

$$
\phi_p(A) = \min \int \int \int \int_{Q \in R^4} \phi(Q)d\mu(Q)
$$

s.t. $A = \int \int \int \int_{Q \in R^4} Q d\mu(Q)$,

$$
det(A) = \int \int \int \int_{Q \in R^4} det(Q)d\mu(Q)
$$
Polyconvex Envolvents (4/6)

If function ϕ has polynomial structure

$$\phi(A) = \phi(x_1, x_2, x_3, x_4) = \sum_{0 \leq i+j+k+l \leq 2n} c_{ijkl} x_1^i x_2^j x_3^k x_4^l$$

where $A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$.
Polyconvex Envolvents (5/6)

The polyconvex envolvent estimation can be written as an optimization problem in measure as the mathematical program:

\[
\phi_p(A) = \min_m \sum_{0 \leq i+j+k+l \leq 2n} c_{ijkl} m_{ijkl}
\]

s.t. \(A = \begin{pmatrix} m_{1000} & m_{0100} \\ m_{0010} & m_{0001} \end{pmatrix} \),

\[
\det(A) = m_{1000} m_{0001} - m_{0010} m_{0100}
\]
Polyconvex Envolvents (6/6)

- In which the design variables m_{ijkl} must represent the algebraic moments of a probability measure in \mathbb{R}^4. This implies an additional restriction in the form of a matrix inequality

$$m_{ijkl} = \int x_1^i x_2^j x_3^k x_4^l \, d\mu(x_1^i, x_2^j, x_3^k, x_4^l)$$

- The restriction matrixes must be semidefinite positive
Restriction Matrixes (1/2)

- Given the functions following functions
 \[x_1^i x_2^j x_3^k x_4^l \]
 they are written as a list in the first row and column of a table.

- To fill every position in the matrix multiply every element of the first row and
 the first column between them:
 \[x_1^{i+j'} x_2^{j+k'} x_3^{k+l'} \]
 where \[0 \leq i + j + k + l \leq n \]
 \[0 \leq i' + j' + k' + l' \leq n \]

\[
\begin{array}{cccccccc}
1 & x_1 & \ldots & x_4 & x_1^2 & \ldots & x_4^2 & \ldots & x_3x_4 \\
x_1 & x_1 & x_4 & x_1^2 & \ldots & x_4^2 & \ldots & x_3x_4 \\
\vdots & \vdots \\
x_4 & x_1x_4 & x_4^2 & x_1x_4 & x_4^2 & \ldots & x_3x_4 \\
x_1^2 & x_1^2 & x_1^2 & x_1^2 & x_1^2 & \ldots & x_1x_3x_4 \\
\vdots & \vdots \\
x_4^2 & x_4^2 & x_4^2 & x_4^2 & x_4^2 & \ldots & x_4^2 \\
x_1x_2 & x_1x_2 & x_1x_2 & x_1x_2 & x_1x_2 & \ldots & x_1x_3x_4 \\
\vdots & \vdots \\
x_3x_4 & x_3x_4 & x_3x_4 & x_3x_4 & x_3x_4 & \ldots & x_3x_4 \\
\end{array}
\]
Restriction Matrixes (2/2)

- Change the functions for their respective moment

\[x_1^i x_2^j x_3^k x_4^l \rightarrow m_{ijkl} \]

- The resulting matrix must be semidefinite positive

\[M = \begin{bmatrix}
 m_{0000} & m_{1000} & \cdots & m_{0001} & m_{2000} & \cdots & m_{0002} & m_{1100} & \cdots & m_{0011} \\
 m_{1000} & m_{2000} & \cdots & m_{1001} & m_{3000} & \cdots & m_{1002} & m_{2100} & \cdots & m_{1011} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 m_{0001} & m_{1001} & \cdots & m_{0002} & m_{2001} & \cdots & m_{0003} & m_{1101} & \cdots & m_{0012} \\
 m_{2000} & m_{3000} & \cdots & m_{2001} & m_{4000} & \cdots & m_{2002} & m_{3100} & \cdots & m_{2011} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 m_{0002} & m_{2100} & \cdots & m_{1101} & m_{3100} & \cdots & m_{1102} & m_{2200} & \cdots & m_{1111} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 m_{0011} & m_{1011} & \cdots & m_{0012} & m_{2011} & \cdots & m_{0013} & m_{1111} & \cdots & m_{0022}
\end{bmatrix} \]
Polyconvex Env. Conclusion

- To find the polyconvex envelopent of a function solve the semidefinite program in the standard form:

\[
\text{Minimize } \sum_{0 \leq i+j+k+l \leq 4} c_{ijkl} m_{ijkl}
\]

s.t. \(R + M_2 \geq 0, \)
\(a_1 a_4 - a_2 a_3 = m_{1001} - m_{0110}, \)
\(m_{0000} = 1 \)
Example 1 (1/2) \(\phi(A) = \left(1 - \det(A)^2\right)^2 \)

- As instance take

\[
\phi(A) = \left(1 - \det(A)^2\right)^2
\]

\[
A = \begin{bmatrix}
 x_1 & x_2 \\
 x_3 & x_4
\end{bmatrix}
\]

- An 8th degree polynomial, this implies a 70x70 restriction matrix.
Example 1 (2/2) \(\phi(A) = \left(1 - \det(A)^2\right)^2 \)

- The polyconvex envelopment is calculated at

\[
A = \begin{bmatrix}
1 & 0.1 \\
0.5 & 0.3 \\
\end{bmatrix}
\]

- The value of the polyconvex envelopent at this point is \(\phi_c(A) = 0.1 \) \((\phi(A) = 0.8789) \)

<table>
<thead>
<tr>
<th>Moment</th>
<th>Value</th>
<th>Moment</th>
<th>Value</th>
<th>Moment</th>
<th>Value</th>
<th>Moment</th>
<th>Value</th>
<th>Moment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{000}</td>
<td>1.6119</td>
<td>m_{100}</td>
<td>0.5581</td>
<td>m_{011}</td>
<td>0.0782</td>
<td>m_{200}</td>
<td>0.2453</td>
<td>m_{2510}</td>
<td>0.0831</td>
</tr>
<tr>
<td>m_{110}</td>
<td>0.1116</td>
<td>m_{200}</td>
<td>0.7376</td>
<td>m_{030}</td>
<td>0.1589</td>
<td>m_{1210}</td>
<td>0.0283</td>
<td>m_{2301}</td>
<td>0.1899</td>
</tr>
<tr>
<td>m_{120}</td>
<td>0.1430</td>
<td>m_{300}</td>
<td>0.9064</td>
<td>m_{040}</td>
<td>1.8542</td>
<td>m_{1202}</td>
<td>0.3127</td>
<td>m_{1200}</td>
<td>2.4029</td>
</tr>
<tr>
<td>m_{130}</td>
<td>0.1730</td>
<td>m_{010}</td>
<td>0.0732</td>
<td>m_{1010}</td>
<td>0.2301</td>
<td>m_{1004}</td>
<td>0.1001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{140}</td>
<td>0.7531</td>
<td>m_{1110}</td>
<td>0.0842</td>
<td>m_{1020}</td>
<td>0.5746</td>
<td>m_{1103}</td>
<td>0.0828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{150}</td>
<td>0.4889</td>
<td>m_{1120}</td>
<td>0.0944</td>
<td>m_{1030}</td>
<td>0.1230</td>
<td>m_{1101}</td>
<td>0.0857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{160}</td>
<td>1.0382</td>
<td>m_{1130}</td>
<td>0.1910</td>
<td>m_{1040}</td>
<td>0.5653</td>
<td>m_{1102}</td>
<td>0.0413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{170}</td>
<td>0.1027</td>
<td>m_{1140}</td>
<td>0.1789</td>
<td>m_{1050}</td>
<td>3.3920</td>
<td>m_{1103}</td>
<td>0.0781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{180}</td>
<td>0.0980</td>
<td>m_{1150}</td>
<td>0.0762</td>
<td>m_{1001}</td>
<td>0.6758</td>
<td>m_{1104}</td>
<td>0.0611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{190}</td>
<td>1.5515</td>
<td>m_{1210}</td>
<td>0.1741</td>
<td>m_{2001}</td>
<td>0.1042</td>
<td>m_{1110}</td>
<td>0.1396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{200}</td>
<td>3.3439</td>
<td>m_{1210}</td>
<td>0.1975</td>
<td>m_{2010}</td>
<td>0.1200</td>
<td>m_{1131}</td>
<td>0.4134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{210}</td>
<td>0.3232</td>
<td>m_{2020}</td>
<td>0.2427</td>
<td>m_{2020}</td>
<td>0.0649</td>
<td>m_{1201}</td>
<td>0.0428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{220}</td>
<td>0.4266</td>
<td>m_{2030}</td>
<td>0.2755</td>
<td>m_{2030}</td>
<td>0.8144</td>
<td>m_{1100}</td>
<td>0.4538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{230}</td>
<td>0.5611</td>
<td>m_{2040}</td>
<td>0.2655</td>
<td>m_{2040}</td>
<td>0.0899</td>
<td>m_{1130}</td>
<td>0.7017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{240}</td>
<td>0.3364</td>
<td>m_{2050}</td>
<td>0.4007</td>
<td>m_{2050}</td>
<td>0.2142</td>
<td>m_{1122}</td>
<td>0.0682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{250}</td>
<td>0.0716</td>
<td>m_{2060}</td>
<td>0.2473</td>
<td>m_{2060}</td>
<td>0.3183</td>
<td>m_{1120}</td>
<td>0.0216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{260}</td>
<td>0.0752</td>
<td>m_{2070}</td>
<td>0.2292</td>
<td>m_{2070}</td>
<td>0.0896</td>
<td>m_{1130}</td>
<td>0.1896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{270}</td>
<td>0.1210</td>
<td>m_{2080}</td>
<td>0.4446</td>
<td>m_{2080}</td>
<td>0.4346</td>
<td>m_{1301}</td>
<td>0.3985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{280}</td>
<td>0.0970</td>
<td>m_{2090}</td>
<td>0.1291</td>
<td>m_{2090}</td>
<td>1.2210</td>
<td>m_{1410}</td>
<td>0.0727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{290}</td>
<td>0.0191</td>
<td>m_{2100}</td>
<td>0.3755</td>
<td>m_{2100}</td>
<td>1.2313</td>
<td>m_{1320}</td>
<td>1.2529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{300}</td>
<td>0.0869</td>
<td>m_{2110}</td>
<td>0.3887</td>
<td>m_{2110}</td>
<td>0.2313</td>
<td>m_{1320}</td>
<td>0.7666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{310}</td>
<td>0.4660</td>
<td>m_{2120}</td>
<td>1.3631</td>
<td>m_{2120}</td>
<td>0.0827</td>
<td>m_{1320}</td>
<td>1.2410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{320}</td>
<td>0.9152</td>
<td>m_{2130}</td>
<td>0.0689</td>
<td>m_{2130}</td>
<td>0.2899</td>
<td>m_{1300}</td>
<td>0.3678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{330}</td>
<td>0.0645</td>
<td>m_{2140}</td>
<td>0.0677</td>
<td>m_{2140}</td>
<td>0.0716</td>
<td>m_{1310}</td>
<td>0.1979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{340}</td>
<td>0.0673</td>
<td>m_{2150}</td>
<td>0.6000</td>
<td>m_{2150}</td>
<td>0.0359</td>
<td>m_{1300}</td>
<td>0.0787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{350}</td>
<td>0.7093</td>
<td>m_{2200}</td>
<td>0.2068</td>
<td>m_{2200}</td>
<td>0.3039</td>
<td>m_{1310}</td>
<td>0.0787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{360}</td>
<td>0.2800</td>
<td>m_{2210}</td>
<td>0.1961</td>
<td>m_{2210}</td>
<td>0.0481</td>
<td>m_{1310}</td>
<td>0.1038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{370}</td>
<td>0.2467</td>
<td>m_{2220}</td>
<td>0.0394</td>
<td>m_{2220}</td>
<td>0.1329</td>
<td>m_{1300}</td>
<td>0.1363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{380}</td>
<td>0.0647</td>
<td>m_{2230}</td>
<td>0.8084</td>
<td>m_{2230}</td>
<td>1.1868</td>
<td>m_{1300}</td>
<td>0.2813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{390}</td>
<td>1.5301</td>
<td>m_{2240}</td>
<td>0.5851</td>
<td>m_{2240}</td>
<td>0.0787</td>
<td>m_{1300}</td>
<td>0.2813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{400}</td>
<td>1.8111</td>
<td>m_{2250}</td>
<td>0.3025</td>
<td>m_{2250}</td>
<td>0.1349</td>
<td>m_{1300}</td>
<td>0.1354</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2 (1/2) \[\phi(A) = \left(1 + \det(A)^2\right)^2 \]

- As instance take

\[\phi(A) = \left(1 + \det(A)^2\right)^2 \]

\[A = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \]

- An 8th degree polynomial, this implies a 70x70 restriction matrix.

- This polynomial is polyconvex by definition
Example 2 (2/2) \(\phi(A) = \left(1 + \det(A)^2\right)^2 \)

- The polyconvex envolvment is calculated at
 \[
 A = \begin{bmatrix}
 1 & 2 \\
 3 & 6
 \end{bmatrix}
 \]

- The value of the polyconvex envolvent at this point is \(\phi_c(A) = 1 \) \((\phi(A) = 1) \)