Essential Concepts

Black Holes and Wave Mechanics

Dr. Sam R. Dolan

University College Dublin Ireland

Matematicos de la Relatividad General

Course Content

1. Introduction

- General Relativity basics
- Schwarzschild's solution
- Classical mechanics

2. Scalar field + Schwarzschild Black Hole

- Klein-Gordon equation
- Wave-packet scattering
- Quasi-normal modes
- 3. Scattering theory
 - Perturbation theory
 - Partial wave analysis
 - Glories and diffraction patterns
- 4. Radiation Reaction and Black Holes
 - Self-force in curved spacetime
 - Green's functions
- 5. Acoustic Black Holes
 - Navier-Stokes eqn \rightarrow Lorentzian geometry
 - Simple models

Course Content

1. Introduction

- General Relativity basics
- Schwarzschild's solution
- Classical mechanics

2. Scalar field + Schwarzschild Black Hole

- Klein-Gordon equation
- Wave-packet scattering
- Quasi-normal modes
- 3. Scattering theory
 - Perturbation theory
 - Partial wave analysis
 - · Glories and diffraction patterns
- 4. Radiation Reaction and Black Holes
 - Self-force in curved spacetime
 - Green's functions
- 5. Acoustic Black Holes
 - Navier-Stokes eqn \rightarrow Lorentzian geometry
 - Simple models

Course Content

1. Introduction

- General Relativity basics
- Schwarzschild's solution
- Classical mechanics

2. Scalar field + Schwarzschild Black Hole

- Klein-Gordon equation
- Wave-packet scattering
- Quasi-normal modes
- 3. Scattering theory
 - · Perturbation theory
 - · Partial wave analysis
 - Glories and diffraction patterns
- 4. Radiation Reaction and Black Holes
 - Self-force in curved spacetime
 - Green's functions
- 5. Acoustic Black Holes
 - Navier-Stokes eqn \rightarrow Lorentzian geometry
 - Simple models

Course Content

1. Introduction

- General Relativity basics
- Schwarzschild's solution
- Classical mechanics
- 2. Scalar field + Schwarzschild Black Hole
 - Klein-Gordon equation
 - Wave-packet scattering
 - Quasi-normal modes
- 3. Scattering theory
 - · Perturbation theory
 - · Partial wave analysis
 - Glories and diffraction patterns
- 4. Radiation Reaction and Black Holes
 - Self-force in curved spacetime
 - Green's functions
- 5. Acoustic Black Holes
 - Navier-Stokes eqn → Lorentzian geometry
 - Simple models

・ロット 金田 マス 日マ トロマ

Fields have spin *s* and, maybe, rest mass *m*.

- s = 0. Scalar field. Klein-Gordon eqn. Pion π^0 .
- $s = \frac{1}{2}$. Spinor field. Dirac eqn. Neutrino ν , electron e^- .
- s = 1. Vector field . Maxwell's eqns. Photon γ .
- *s* = 2. Tensor field. Gravitational waves (linearized). Graviton (?).

Fields have spin *s* and, maybe, rest mass *m*.

- s = 0. Scalar field. Klein-Gordon eqn. Pion π^0 .
- $s = \frac{1}{2}$. Spinor field. Dirac eqn. Neutrino ν , electron e^- .
- s = 1. Vector field . Maxwell's eqns. Photon γ .
- *s* = 2. Tensor field. Gravitational waves (linearized). Graviton (?).

Fields have spin *s* and, maybe, rest mass *m*.

- s = 0. Scalar field. Klein-Gordon eqn. Pion π^0 .
- $s = \frac{1}{2}$. Spinor field. Dirac eqn. Neutrino ν , electron e^- .
- s = 1. Vector field . Maxwell's eqns. Photon γ .
- *s* = 2. Tensor field. Gravitational waves (linearized). Graviton (?).

Fields have spin *s* and, maybe, rest mass *m*.

- s = 0. Scalar field. Klein-Gordon eqn. Pion π^0 .
- $s = \frac{1}{2}$. Spinor field. Dirac eqn. Neutrino ν , electron e^- .
- s = 1. Vector field . Maxwell's eqns. Photon γ .
- *s* = 2. Tensor field. Gravitational waves (linearized). Graviton (?).

Black Hole Solutions

"Black holes have no hair". In classical GR, black holes are described by just three parameters.

- Mass M
- Charge Q
- Angular Momentum J.

4D Classification:

- Schwarzschild (Q = 0, J = 0).
- Reissner-Nordström ($Q \neq 0, J = 0$).
- Kerr ($Q = 0, J \neq 0$).
- Kerr-Newman ($Q \neq 0, J \neq 0$).

Black Hole Solutions

"Black holes have no hair". In classical GR, black holes are described by just three parameters.

- Mass M
- Charge Q
- Angular Momentum J.

4D Classification:

- Schwarzschild (Q = 0, J = 0).
- Reissner-Nordström ($Q \neq 0, J = 0$).
- Kerr ($Q = 0, J \neq 0$).
- Kerr-Newman ($Q \neq 0, J \neq 0$).

Black Hole Mechanics

 $\ensuremath{\mathsf{GR}}\xspace \Rightarrow \ensuremath{\mathsf{Laws}}\xspace$ of thermodynamics

- 1st : $dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$
 - $\Leftrightarrow \quad dU = TdS pdV + \mu dN$
- 2nd : Horizon area always increases, dA ≥ 0 ⇔ entropy always increases S ≥ 0.
- 3rd : Impossible to form a black hole with zero surface gravity $\kappa \Leftrightarrow$ impossibility of absolute zero T = 0.

QFT \Rightarrow Hawking radiation (1970s):

$$k_B T_H = \frac{\hbar \kappa}{2\pi c}$$
, where surface gravity : $\kappa = \frac{c^4}{4GM}$

Black Hole Mechanics

 $\ensuremath{\mathsf{GR}}\xspace \Rightarrow \ensuremath{\mathsf{Laws}}\xspace$ of thermodynamics

- 1st : $dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$
 - $\Leftrightarrow \quad dU = T dS p dV + \mu dN$
- 2nd : Horizon area always increases, dA ≥ 0 ⇔ entropy always increases S ≥ 0.
- 3rd : Impossible to form a black hole with zero surface gravity κ ⇔ impossibility of absolute zero T = 0.

QFT \Rightarrow Hawking radiation (1970s):

$$k_B T_H = \frac{\hbar \kappa}{2\pi c}$$
, where surface gravity : $\kappa = \frac{c^4}{4GM}$

Black Hole Mechanics

 $\ensuremath{\mathsf{GR}}\xspace \Rightarrow \ensuremath{\mathsf{Laws}}\xspace$ of thermodynamics

• 1st : $dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$

$$\Leftrightarrow \quad dU = TdS - pdV + \mu dN$$

- 2nd : Horizon area always increases, dA ≥ 0 ⇔ entropy always increases S ≥ 0.
- 3rd : Impossible to form a black hole with zero surface gravity κ ⇔ impossibility of absolute zero T = 0.

 $QFT \Rightarrow$ Hawking radiation (1970s):

$$k_B T_H = \frac{\hbar \kappa}{2\pi c}$$
, where surface gravity : $\kappa = \frac{c^4}{4GM}$

Black Hole Mechanics

 $\ensuremath{\mathsf{GR}}\xspace \Rightarrow \ensuremath{\mathsf{Laws}}\xspace$ of thermodynamics

• 1st :
$$dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$$

$$\Leftrightarrow \quad dU = TdS - pdV + \mu dN$$

- 2nd : Horizon area always increases, dA ≥ 0 ⇔ entropy always increases S ≥ 0.
- 3rd : Impossible to form a black hole with zero surface gravity κ ⇔ impossibility of absolute zero T = 0.

 $QFT \Rightarrow$ Hawking radiation (1970s):

$$k_B T_H = rac{\hbar \kappa}{2\pi c},$$
 where surface gravity : $\kappa = rac{c^4}{4GM}$

Motivations (I): Gravitational Waves

Gravitational Waves are a key prediction of General Relativity

- Very weak ($h \sim 10^{-21}$). Yet to be detected!
- Weakly-interacting, coupled only to bulk motion of matter.

GWs will carry strong signals from black holes in process of:

- Formation: gravitational collapse and supernovae.
- Merger: Binary black holes in galaxy.
- Inspiral. Solar-mass BHs in orbit around supermassive BHs ("radiation reaction" problem).

(日)

Motivations (I): Gravitational Waves

Gravitational Waves are a key prediction of General Relativity

- Very weak ($h \sim 10^{-21}$). Yet to be detected!
- Weakly-interacting, coupled only to bulk motion of matter.

GWs will carry strong signals from black holes in process of:

- Formation: gravitational collapse and supernovae.
- Merger: Binary black holes in galaxy.
- Inspiral. Solar-mass BHs in orbit around supermassive BHs ("radiation reaction" problem).

Motivations (I): Gravitational Waves

- Are black holes stable to small perturbations?
- Precise modelling of BH signals requires full non-linear numerical solutions to Einstein's field equations, but ...
- A surprising level of accuracy can be obtained in the linearized approximation, and ...
- A surprising amount can be learned by just studying a 'toy model': the massless scalar field.

Motivations (I): Gravitational Waves

- Are black holes stable to small perturbations?
- Precise modelling of BH signals requires full non-linear numerical solutions to Einstein's field equations, but ...
- A surprising level of accuracy can be obtained in the linearized approximation, and ...
- A surprising amount can be learned by just studying a 'toy model': the massless scalar field.

Motivations (I): Gravitational Waves

- Are black holes stable to small perturbations?
- Precise modelling of BH signals requires full non-linear numerical solutions to Einstein's field equations, but ...
- A surprising level of accuracy can be obtained in the linearized approximation, and ...
- A surprising amount can be learned by just studying a 'toy model': the massless scalar field.

Motivations (II): "Quantum Gravity"

- Classically, black holes absorb and scatter radiation.
- Classical GR + Quantized fields \Rightarrow Hawking radiation.
- Thermal emission spectrum T_H = (ħ/2πk_Bc)κ ⇒ BH entropy S ~ A/4.
- Information loss puzzle: is the evolution of the wavefunction of the universe unitary?
- Questions for Quantum Gravity: e.g. string theory or loop quantum gravity.

Motivations (II): "Quantum Gravity"

- Classically, black holes absorb and scatter radiation.
- Classical GR + Quantized fields \Rightarrow Hawking radiation.
- Thermal emission spectrum T_H = (ħ/2πk_Bc)κ ⇒ BH entropy S ~ A/4.
- Information loss puzzle: is the evolution of the wavefunction of the universe unitary?
- Questions for Quantum Gravity: e.g. string theory or loop quantum gravity.

Motivations (III): Speculations

- Acoustic ("dumb") holes created in laboratory?
- "Higher-dimensional" black objects (BHs, strings, branes). Experimental signature at LHC?

Newtonian Mechanics

World view : time is absolute and universal.

- Observer-independent *t* coordinate.
- 3D world-line: $x^{i}(t) \equiv [x^{1}(t), x^{2}(t), x^{3}(t)].$
- Newton's Laws \Rightarrow differential equations for $x^i(t)$
- Action principle: $S = \int dt [T(\dot{x}^i(t)) V(x^i(t))].$
- e.g. $T = \frac{1}{2}m|\dot{x}|^2$ and $V = \frac{e}{2}[\Phi(x)]^2$
- \Rightarrow Euler-Lagrange: $f_i = m\ddot{x}_i = -e\frac{\partial\Phi}{\partial x^i}$

Newtonian Mechanics

World view : time is absolute and universal.

- Observer-independent *t* coordinate.
- 3D world-line: $x^{i}(t) \equiv [x^{1}(t), x^{2}(t), x^{3}(t)].$
- Newton's Laws \Rightarrow differential equations for $x^{i}(t)$
- Action principle: $S = \int dt [T(\dot{x}^i(t)) V(x^i(t))].$
- e.g. $T = \frac{1}{2}m|\dot{x}|^2$ and $V = \frac{e}{2}[\Phi(x)]^2$
- \Rightarrow Euler-Lagrange: $f_i = m\ddot{x}_i = -e\frac{\partial\Phi}{\partial x^i}$

Special Relativity

World view :

- Time depends on observer.
- Inertial observers are special.

Concept of unified space-time:

- Events in space-time labelled with four coordinates $x^{\mu} = [x^0, x^1, x^2, x^3].$
- Set of coordinates systems corresponding to lengths and times measured by inertial observers.
- Inertial observers in constant relative motion.
- Coordinate distances measured by different inertial observers are related by Lorentz transformation.

Special Relativity

World view :

- Time depends on observer.
- Inertial observers are special.

Concept of unified space-time:

- Events in space-time labelled with four coordinates $x^{\mu} = [x^0, x^1, x^2, x^3].$
- Set of coordinates systems corresponding to lengths and times measured by inertial observers.
- Inertial observers in constant relative motion.
- Coordinate distances measured by different inertial observers are related by Lorentz transformation.

Special Relativity

World view :

- Time depends on observer.
- Inertial observers are special.

Concept of unified space-time:

- Events in space-time labelled with four coordinates $x^{\mu} = [x^0, x^1, x^2, x^3].$
- Set of coordinates systems corresponding to lengths and times measured by inertial observers.
- Inertial observers in constant relative motion.
- Coordinate distances measured by different inertial observers are related by Lorentz transformation.

Special Relativity: Lorentz Transformation

- Two inertial observers measure 'coordinate distances' $\Delta x^{\mu} = [c\Delta t, \Delta x, \Delta y, \Delta z]$ and $\Delta x^{\mu\prime} = [c\Delta t', \Delta x', \Delta y', \Delta z'].$
- If the 2nd observer is moving at speed *v* in the +*x* direction relative to the first observer, then

$$c\Delta t' = \gamma \left(c\Delta t - v\Delta x/c \right), \qquad \Delta y' = \Delta y$$

$$\Delta x' = \gamma \left(\Delta x - v\Delta t \right), \qquad \Delta z' = \Delta z,$$

where

$$\gamma = \left(1 - v^2/c^2\right)^{-1/2}.$$

Special Relativity: Lorentz Transformation

- Two inertial observers measure 'coordinate distances' $\Delta x^{\mu} = [c\Delta t, \Delta x, \Delta y, \Delta z]$ and $\Delta x^{\mu\prime} = [c\Delta t', \Delta x', \Delta y', \Delta z'].$
- If the 2nd observer is moving at speed *v* in the +*x* direction relative to the first observer, then

$$c\Delta t' = \gamma \left(c\Delta t - v\Delta x/c
ight), \qquad \Delta y' = \Delta y \ \Delta x' = \gamma \left(\Delta x - v\Delta t
ight), \qquad \Delta z' = \Delta z,$$

where

$$\gamma = \left(1 - v^2/c^2\right)^{-1/2}$$

(日) (日) (日) (日) (日) (日) (日)

The Interval

There is one universal quantity on which inertial observers agree: the space-time interval,

$$(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2.$$

= $\sum_{\mu\nu} \eta_{\mu\nu} \Delta x^{\mu} \Delta x^{\nu}.$

The interval may be positive, negative or zero:

- time-like if $(\Delta s)^2 > 0$,
- space-like if $(\Delta s)^2 < 0$, or,
- null if $(\Delta s)^2 = 0$.

(日) (日) (日) (日) (日) (日) (日)

The Interval

There is one universal quantity on which inertial observers agree: the space-time interval,

$$(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2.$$

= $\sum_{\mu\nu} \eta_{\mu\nu} \Delta x^{\mu} \Delta x^{\nu}.$

The interval may be positive, negative or zero:

- time-like if $(\Delta s)^2 > 0$,
- space-like if $(\Delta s)^2 < 0$, or,
- null if $(\Delta s)^2 = 0$.

General Relativity (I)

- Uniform gravitational field ⇔ Uniformly-accelerating frame. (Principle of Equivalence).
- Gravity ⇒ tidal forces : parallel paths are pushed together or pulled apart.
- Locally, space-time still looks flat (Lorentzian) ...
- .. but globally space-time may be curved. 'Over there' not the same as 'over here'.
- No global inertial frame.
- Define and compare local quantities.

General Relativity (I)

- Uniform gravitational field ⇔ Uniformly-accelerating frame. (Principle of Equivalence).
- Gravity ⇒ tidal forces : parallel paths are pushed together or pulled apart.
- Locally, space-time still looks flat (Lorentzian) ...
- .. but globally space-time may be curved. 'Over there' not the same as 'over here'.
- No global inertial frame.
- Define and compare local quantities.

General Relativity: The Metric

• Space-time interval in differential (local) form:

$$ds^{2} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu}(x) dx^{\mu} dx^{\nu}$$
 (1)
 $\equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$ (2)

- $g_{\mu\nu}$ is a symmetric tensor called the metric.
- Summation convention is used ('one up, one down').
- Metric inverse $g^{\mu\nu}$ is defined by

$$g_{\mu\nu}g^{\nu\lambda} = \delta^{\lambda}_{\mu}$$

• The metric (metric inverse) raises (lowers) indices, i.e.

$$dx_{\mu}=g_{\mu
u}dx^{
u}.$$

General Relativity: The Metric

• Space-time interval in differential (local) form:

$$ds^{2} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu}(x) dx^{\mu} dx^{\nu}$$
 (1)
 $\equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$ (2)

- $g_{\mu\nu}$ is a symmetric tensor called the metric.
- Summation convention is used ('one up, one down').
- Metric inverse $g^{\mu\nu}$ is defined by

$$g_{\mu\nu}g^{\nu\lambda} = \delta^{\lambda}_{\mu}$$

• The metric (metric inverse) raises (lowers) indices, i.e.

$$dx_{\mu}=g_{\mu
u}dx^{
u}.$$

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨー
Coordinate Transformations

- Many different coordinate systems describe the same space-time.
- Under general coordinate transformation,

$$x\mapsto x'=x^{\mu'}(x)$$

'up' and 'down' indices transform in opposite ways:

$$a^{\mu\prime} = rac{\partial x^{\mu\prime}}{\partial x^{\mu}} a^{\mu}, \qquad a_{\mu\prime} = rac{\partial x^{\mu}}{\partial x^{\mu\prime}} a_{\mu}.$$

- i.e. transform like dx^{μ} or like $\frac{\partial}{\partial x^{\mu}}$.
- To define a scalar that is coordinate-independent we contract upper and lower indices, e.g.

$$\Phi = a_{\mu}b^{\mu}$$
 so that $\Phi \mapsto \Phi' = \Phi$

Coordinate Transformations

- Many different coordinate systems describe the same space-time.
- Under general coordinate transformation,

$$x\mapsto x'=x^{\mu'}(x)$$

'up' and 'down' indices transform in opposite ways:

$$a^{\mu\prime} = rac{\partial x^{\mu\prime}}{\partial x^{\mu}} a^{\mu}, \qquad a_{\mu\prime} = rac{\partial x^{\mu}}{\partial x^{\mu\prime}} a_{\mu}.$$

- i.e. transform like dx^{μ} or like $\frac{\partial}{\partial x^{\mu}}$.
- To define a scalar that is coordinate-independent we contract upper and lower indices, e.g.

$$\Phi = a_{\mu}b^{\mu}$$
 so that $\Phi \mapsto \Phi' = \Phi$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Geodesics

- Particles follow world-lines in space-time : $x^{\mu} = x^{\mu}(\lambda) \dots$
- Free particles follow privileged world-lines called geodesics.
- Geodesics are the generalisation of the Euclidean idea of a straight line.
- Straight line: shortest distance between two points.
- Geodesic: path between two points along which the interval is extremal.

Geodesics

- Particles follow world-lines in space-time : $x^{\mu} = x^{\mu}(\lambda) \dots$
- Free particles follow privileged world-lines called geodesics.
- Geodesics are the generalisation of the Euclidean idea of a straight line.
- Straight line: shortest distance between two points.
- Geodesic: path between two points along which the interval is extremal.

World-lines

• Free particles follow geodesics \Rightarrow action principle

$$S=\int ds=\int d\lambda\, L(x^{\mu},\dot{x}^{\mu};t)$$
 where $L=\sqrt{g_{\mu
u}\dot{x}^{\mu}\dot{x}^{
u}}$

and $x^{\mu}(\lambda)$ and $\dot{x}^{\mu} \equiv \frac{dx^{\mu}}{d\lambda}$.

Euler-Lagrange equations:

$$\frac{\partial L}{\partial x^{\mu}} = \frac{d}{d\lambda} \left(\frac{\partial L}{\partial \dot{x}^{\mu}} \right)$$

 For time-like paths, set dλ = ds = cdτ, where τ is the proper time experienced by the particle.

World-lines

Free particles follow geodesics ⇒ action principle

$${\cal S}=\int ds=\int d\lambda\, {\cal L}(x^\mu,\dot x^\mu;t)$$
 where ${\cal L}=\sqrt{g_{\mu
u}\dot x^\mu\dot x^
u}$

and $x^{\mu}(\lambda)$ and $\dot{x}^{\mu} \equiv \frac{dx^{\mu}}{d\lambda}$.

• Euler-Lagrange equations:

$$\frac{\partial L}{\partial x^{\mu}} = \frac{d}{d\lambda} \left(\frac{\partial L}{\partial \dot{x}^{\mu}} \right)$$

 For time-like paths, set dλ = ds = cdτ, where τ is the proper time experienced by the particle.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

The Schwarzschild Space-time

- Unique asymptotically flat space-time exterior to a spherically-symmetric grav. source (e.g. our Sun).
- In Schwarzschild coordinates

$$ds^{2} = (1 - 2M/r)dt^{2} - (1 - 2M/r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Units: G = c = 1, so $M \equiv GM/c^2$.
- Event horizon at r = 2M.
- Compact objects that lie entirely within their horizon are black holes.
- Many other coordinate systems may be used.

The Schwarzschild Space-time

- Unique asymptotically flat space-time exterior to a spherically-symmetric grav. source (e.g. our Sun).
- In Schwarzschild coordinates

$$ds^{2} = (1 - 2M/r)dt^{2} - (1 - 2M/r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Units: G = c = 1, so $M \equiv GM/c^2$.
- Event horizon at r = 2M.
- Compact objects that lie entirely within their horizon are black holes.
- Many other coordinate systems may be used.

Schwarzschild Geodesics (I)

$$ds^{2} = (1 - 2M/r)dt^{2} - (1 - 2M/r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Metric is independent of t and $\phi \Rightarrow$ conserved quantities
- In equatorial plane ($\theta = \pi/2, \dot{\theta} = 0$):

$$(1 - 2M/r)\dot{t} = k,$$

 $r^2\dot{\phi} = h.$

- 'Energy' k and 'Angular momentum' h.
- To find an equation for *r*, use

$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = \epsilon^2 \equiv \begin{cases} 0 & \text{null} \\ 1 & \text{time-like} \end{cases}$$

・ コット (雪) (小田) (コット 日)

・ コット (雪) (小田) (コット 日)

Schwarzschild Geodesics (I)

$$ds^{2} = (1 - 2M/r)dt^{2} - (1 - 2M/r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Metric is independent of *t* and $\phi \Rightarrow$ conserved quantities
- In equatorial plane ($\theta = \pi/2, \dot{\theta} = 0$):

$$(1 - 2M/r)\dot{t} = k,$$

 $r^2\dot{\phi} = h.$

- 'Energy' k and 'Angular momentum' h.
- To find an equation for *r*, use

$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = \epsilon^2 \equiv \begin{cases} 0 & \text{null} \\ 1 & \text{time-like} \end{cases}$$

Schwarzschild Geodesics (I)

$$ds^{2} = (1 - 2M/r)dt^{2} - (1 - 2M/r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Metric is independent of *t* and $\phi \Rightarrow$ conserved quantities
- In equatorial plane ($\theta = \pi/2, \dot{\theta} = 0$):

$$(1 - 2M/r)\dot{t} = k,$$

 $r^2\dot{\phi} = h.$

- 'Energy' k and 'Angular momentum' h.
- To find an equation for *r*, use

$$g_{\mu
u}\dot{x}^{\mu}\dot{x}^{
u} = \epsilon^2 \equiv \left\{ egin{array}{cc} 0 & {
m null} \ 1 & {
m time-like} \end{array}
ight.$$

ヘロン 人間 とくほど 人ほど 一日

Schwarzschild Geodesics (II)

• Use
$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}=\epsilon^2$$
 to get

$$(1 - 2M/r)\dot{t}^2 - (1 - 2M/r)^{-1}\dot{r}^2 - r^2\dot{\phi}^2 = \epsilon^2$$

Insert constants of motion to get energy equation :

$$\dot{r}^2 + V_{\rm eff}(r) = k^2 - \epsilon^2,$$

with an effective potential

$$V_{\rm eff}(r) = -\frac{2M\epsilon^2}{r} + \frac{h^2}{r^2} \left(1 - \frac{2M}{r}\right)$$

ъ

・ロン ・四 と ・ ヨ と ・ ヨ と

Schwarzschild Geodesics (II)

• Use
$$g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}=\epsilon^2$$
 to get

$$(1 - 2M/r)\dot{t}^2 - (1 - 2M/r)^{-1}\dot{r}^2 - r^2\dot{\phi}^2 = \epsilon^2$$

Insert constants of motion to get energy equation :

$$\dot{r}^2 + V_{\text{eff}}(r) = k^2 - \epsilon^2,$$

with an effective potential

$$V_{\mathrm{eff}}(r) = -rac{2M\epsilon^2}{r} + rac{h^2}{r^2}\left(1-rac{2M}{r}
ight).$$

<ロ> (四) (四) (三) (三) (三) (三)

Effective Potential

This plot shows the effective potential for timelike geodesics with a range of angular momenta $h = r^2 \dot{\phi}$.

Radial infall

Consider a particle falling radially inwards:

- $(1 2M/r)\dot{t} = k$, h = 0, and $\dot{r} = k^2 1 + 2M/r$
- If it starts from rest at infinity $\Rightarrow k = 1$
- Integrating, we find

$$\tau - \tau_0 = \frac{2}{3(2M)^{1/2}} \left(r_0^{3/2} - r^{3/2} \right)$$

- Passes through horizon smoothly in finite τ .
- But $\dot{t} \to \infty$ as $r \to 2M \Rightarrow$ coordinate singularity.
- Coordinate time t diverges as horizon is approached

Radial infall

Consider a particle falling radially inwards:

- $(1 2M/r)\dot{t} = k, h = 0, \text{ and } \dot{r} = k^2 1 + 2M/r$
- If it starts from rest at infinity $\Rightarrow k = 1$
- Integrating, we find

$$\tau - \tau_0 = \frac{2}{3(2M)^{1/2}} \left(r_0^{3/2} - r^{3/2} \right)$$

- Passes through horizon smoothly in finite τ .
- But $\dot{t} \to \infty$ as $r \to 2M \Rightarrow$ coordinate singularity.
- Coordinate time t diverges as horizon is approached

Radial infall

Consider a particle falling radially inwards:

- $(1 2M/r)\dot{t} = k, h = 0, \text{ and } \dot{r} = k^2 1 + 2M/r$
- If it starts from rest at infinity $\Rightarrow k = 1$
- Integrating, we find

$$\tau - \tau_0 = \frac{2}{3(2M)^{1/2}} \left(r_0^{3/2} - r^{3/2} \right)$$

- Passes through horizon smoothly in finite τ .
- But $t \to \infty$ as $r \to 2M \Rightarrow$ coordinate singularity.
- Coordinate time t diverges as horizon is approached

ヘロン 人間 とくほど 人ほど 一日

Circular Orbits

Circular orbits occur at points where
$$\frac{dV_{eff}}{dr} = 0$$
.
Orbit is stable if $\frac{d^2V_{eff}}{dr^2} > 0$

Exercises :

- 1. Show that the unstable photon (i.e. null) orbit is at r = 3M.
- 2. Show that the stable time-like orbit is at $r = (h^2/2M) \left(1 + \sqrt{1 12M^2/h^2}\right).$
- 3. Show that the innermost stable time-like orbit is at r = 6M.

Scattering and Absorption (I) Photon geodesics around a Schwarzschild black hole

Scattering (II)

• Divide energy equation by $\dot{\phi}^2$ to get orbit equation

$$\left(\frac{du}{d\phi}\right)^2 + u^2 = \frac{k^2 - \epsilon^2}{h^2} + \frac{2M\epsilon^2}{h^2}u + 2Mu^3$$

where u = 1/r.

Differentiate to get GR version of Binet's equation

$$\frac{d^2u}{d\phi^2} + u = \frac{M\epsilon}{h^2} + 3Mu^2.$$

Scattering (II)

• Divide energy equation by $\dot{\phi}^2$ to get orbit equation

$$\left(\frac{du}{d\phi}\right)^2 + u^2 = \frac{k^2 - \epsilon^2}{h^2} + \frac{2M\epsilon^2}{h^2}u + 2Mu^3$$

where u = 1/r.

Differentiate to get GR version of Binet's equation

$$rac{d^2 u}{d\phi^2} + u = rac{M\epsilon}{h^2} + 3Mu^2.$$

Deflection-angle Approximations:

• Weak-field deflection:

$$\Delta heta pprox 4M/b$$

 $\Rightarrow \lim_{ heta
ightarrow 0} rac{d\sigma}{d\Omega} \sim 1/ heta^4$

• Strong-field deflection: Unstable orbit at r = 3M

$$\Delta \theta \sim -\ln\left[(b-b_c)/3.48M
ight]$$

Deflection-angle Approximations:

• Weak-field deflection:

$$\Delta heta pprox 4M/b$$

 $\Rightarrow \lim_{ heta
ightarrow 0} rac{d\sigma}{d\Omega} \sim 1/ heta^4$

• Strong-field deflection: Unstable orbit at r = 3M

$$\Delta heta \sim -\ln\left[(b-b_c)/3.48M
ight]$$

Absorption

• Critical impact parameter $b_c = 3\sqrt{3}M$ (massless)

- $b > b_c$: scattered.
- *b* < *b*_c : absorbed.
- Absorption cross section:

$$\sigma_a = \pi b_c^2 = 27\pi M^2$$

٠

Absorption

• Critical impact parameter $b_c = 3\sqrt{3}M$ (massless)

- $b > b_c$: scattered.
- *b* < *b*_c : absorbed.
- Absorption cross section:

$$\sigma_a = \pi b_c^2 = 27\pi M^2$$

Alternative Coordinate Systems

- Problem: for ingoing geodesics, $t \to +\infty$ as $r \to 2M$.
- t is the time measured by observer at infinity.
- Solution: to continue geodesics across the horizon, use a horizon-penetrating coordinate system.
- Define new time coordinate t' = f(t).

Alternative Coordinate Systems

- Problem: for ingoing geodesics, $t \to +\infty$ as $r \to 2M$.
- t is the time measured by observer at infinity.
- Solution: to continue geodesics across the horizon, use a horizon-penetrating coordinate system.
- Define new time coordinate t' = f(t).

Advanced Eddington-Finkelstein Coordinates

• Define new time coordinate \overline{t} :

$$\overline{t} = t + 2M \ln(r - 2M) \qquad \Rightarrow \qquad d\overline{t} = dt + \frac{2M}{r - 2M} dr$$

• Metric:

$$ds^{2} = (1 - 2M/r)d\bar{t}^{2} - (4M/r)drd\bar{t} - (1 + 2M/r)dr^{2} - r^{2}d\Omega^{2}$$

• Exercise: Show that for Ingoing null geodesic in AEF coordinates,

$$\dot{\overline{t}} = -\dot{r}.$$

- i.e. ingoing null geodesics are straight lines at -45°.
- Metric no longer invariant under time reversal.
- Time reversal ⇒ Retarded E-F coords.

Advanced Eddington-Finkelstein Coordinates

• Define new time coordinate \overline{t} :

$$\overline{t} = t + 2M \ln(r - 2M) \qquad \Rightarrow \qquad d\overline{t} = dt + \frac{2M}{r - 2M} dr$$

Metric:

$$ds^{2} = (1 - 2M/r)d\bar{t}^{2} - (4M/r)drd\bar{t} - (1 + 2M/r)dr^{2} - r^{2}d\Omega^{2}$$

• Exercise: Show that for Ingoing null geodesic in AEF coordinates,

$$\dot{\overline{t}} = -\dot{r}.$$

- i.e. ingoing null geodesics are straight lines at -45°.
- Metric no longer invariant under time reversal.
- Time reversal ⇒ Retarded E-F coords.

~ * 4

Advanced Eddington-Finkelstein Coordinates

• Define new time coordinate \overline{t} :

$$\overline{t} = t + 2M \ln(r - 2M) \qquad \Rightarrow \qquad d\overline{t} = dt + \frac{2M}{r - 2M} dr$$

• Metric:

$$ds^{2} = (1 - 2M/r)d\bar{t}^{2} - (4M/r)drd\bar{t} - (1 + 2M/r)dr^{2} - r^{2}d\Omega^{2}$$

• Exercise: Show that for Ingoing null geodesic in AEF coordinates,

$$\dot{\overline{t}} = -\dot{r}.$$

- i.e. ingoing null geodesics are straight lines at -45°.
- Metric no longer invariant under time reversal.
- Time reversal ⇒ Retarded E-F coords.

Painlevé-Gullstrand Coordinates

• Define new time coordinate \tilde{t} :

$$\tilde{t} = t + 4M\left(\sqrt{r/2M} + \frac{1}{2}\ln\left|\frac{\sqrt{r/2M} - 1}{\sqrt{r/2M} + 1}\right|\right) \Rightarrow d\tilde{t} = dt + \frac{\sqrt{2Mr}}{r - 2M}dr$$

• Metric:

$$ds^{2} = (1 - 2M/r)d\tilde{t}^{2} - \sqrt{\frac{8M}{r}}drd\tilde{t} - dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

- Exercise : Show that for an infalling particle starting from rest at infinity (k = 1),
 t = 1
- i.e. the time coordinate *t* has a physical interpretation: it is the time as measured by an infalling observer.
- Const. *t* hypersurfaces are spatially flat.

Painlevé-Gullstrand Coordinates

• Define new time coordinate \tilde{t} :

$$\tilde{t} = t + 4M\left(\sqrt{r/2M} + \frac{1}{2}\ln\left|\frac{\sqrt{r/2M} - 1}{\sqrt{r/2M} + 1}\right|\right) \Rightarrow d\tilde{t} = dt + \frac{\sqrt{2Mr}}{r - 2M}dr$$

• Metric:

$$ds^{2} = (1 - 2M/r)d\tilde{t}^{2} - \sqrt{\frac{8M}{r}}drd\tilde{t} - dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

- Exercise : Show that for an infalling particle starting from rest at infinity (k = 1),
 t = 1
- i.e. the time coordinate \tilde{t} has a physical interpretation: it is the time as measured by an infalling observer.
- Const. *t* hypersurfaces are spatially flat.

Painlevé-Gullstrand Coordinates

• Define new time coordinate \tilde{t} :

$$\tilde{t} = t + 4M\left(\sqrt{r/2M} + \frac{1}{2}\ln\left|\frac{\sqrt{r/2M} - 1}{\sqrt{r/2M} + 1}\right|\right) \Rightarrow d\tilde{t} = dt + \frac{\sqrt{2Mr}}{r - 2M}dr$$

• Metric:

$$ds^{2} = (1 - 2M/r)d\tilde{t}^{2} - \sqrt{\frac{8M}{r}}drd\tilde{t} - dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

- Exercise : Show that for an infalling particle starting from rest at infinity (k = 1), $\dot{\tilde{t}} = 1$
- i.e. the time coordinate \tilde{t} has a physical interpretation: it is the time as measured by an infalling observer.
- Const. *t* hypersurfaces are spatially flat.

Progress so far

- · Geodesics on Schwarzschild spacetime
- Interval \Rightarrow Action principle \Rightarrow E-L equation \Rightarrow dynamics
- Skipped differential geometry!
- Now : Recap important concepts in GR:
 - Tensors
 - Covariant differentiation
 - Parallel transport
 - Geodesic equation
 - · Connections and metric-compatibility
 - Killing vectors

Tensors

• Under coordinate transform $x \mapsto x' = x^{\mu'}(x)$,

contravariant :
$$a^{\mu\prime}(x') = \frac{\partial x^{\mu\prime}}{\partial x^{\mu}} a^{\mu}(x),$$
 (3)

covariant :
$$b_{\mu\prime}(x') = \frac{\partial x^{\mu}}{\partial x^{\mu\prime}} b_{\mu}(x).$$
 (4)

- Contraction \Rightarrow coordinate-independent scalar $a^{\mu}b_{\mu} = a^{\mu\prime}b_{\mu\prime}$
- Tensors :

$$T^{\alpha\prime\beta\prime\ldots}{}_{\gamma\prime\delta\prime\ldots} = \left(\frac{\partial x^{\alpha\prime}}{\partial x^{\alpha}}\frac{\partial x^{\beta\prime}}{\partial x^{\beta}}\ldots\right) \left(\frac{\partial x^{\gamma}}{\partial x^{\gamma\prime}}\frac{\partial x^{\delta}}{\partial x^{\delta\prime}}\ldots\right) T^{\alpha\beta\ldots}{}_{\gamma\delta\ldots}$$

Covariant derivative (I)

- Construct a derivative of a vector field a^μ that behaves like a tensor
- Try $\partial_{\nu} a^{\mu} \dots$ no good!

$$\partial_{\mu'} a^{\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial x^{\nu'}}{\partial x^{\nu}} a^{\nu} \right) = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\nu'}}{\partial x^{\nu}} \partial_{\mu} a^{\nu} + \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial^2 x^{\nu'}}{\partial x^{\mu} \partial x^{\nu}} a^{\nu}$$

• Define covariant derivative $abla_{\mu}$

$$abla_{\mu} \pmb{a}^{
u} = \partial_{\mu} \pmb{a}^{
u} + \Gamma^{
u}{}_{\mu\lambda} \pmb{a}^{\lambda}$$

where Γ is called a connection (or Christoffel symbol)

Covariant derivative (II)

· Connection is not a tensor. It transforms as

$$\Gamma^{\alpha\prime}{}_{\beta\prime\gamma\prime} = \frac{\partial x^{\alpha\prime}}{\partial x^{\alpha}} \left(\frac{\partial^2 x^{\alpha}}{\partial x^{\beta\prime} \partial x^{\gamma\prime}} + \frac{\partial x^{\beta}}{\partial x^{\beta\prime}} \frac{\partial x^{\gamma}}{\partial x^{\gamma\prime}} \Gamma^{\alpha}{}_{\beta\gamma} \right)$$

• so that $abla_{\mu}a^{\nu}$ transforms as a tensor

$$\nabla_{\mu\prime} a^{\nu\prime} = \frac{\partial x^{\mu}}{\partial x^{\mu\prime}} \frac{\partial x^{\nu\prime}}{\partial x^{\nu}} \nabla_{\mu} a^{\nu}$$

Comma and semicolon notation :

$$a^{\mu}{}_{,
u}\equiv\partial_{
u}a^{\mu}$$
 $a^{\mu}{}_{;
u}\equiv
abla_{
u}a^{\mu}$

Parallel Transport

- Transport a vector a^{ν} along a world-line $x^{\mu}(\lambda)$
- Tangent vector to world-line $u^{\mu} = \frac{dx^{\mu}}{d\lambda}$
- Covariant derivative operator: $\frac{D}{D\lambda} = u^{\mu} \nabla_{\mu}$
- Parallel-transport condition

$$rac{Da^{
u}}{D\lambda}=u^{\mu}
abla_{\mu}a^{
u}=0.$$

Geodesics

- Geodesic: 'Straight line in curved spacetime'
- Parallel transport tangent vector $u^{\mu} = \frac{dx^{\mu}}{d\tau}$ using $u^{\nu} \nabla_{\nu} u^{\mu} = 0$ to construct geodesic $x^{\mu}(\tau)$
- Geodesic equation:

$$rac{Du^{\mu}}{D au}\equivrac{du^{\mu}}{d au}+{\Gamma^{\mu}}_{
u\lambda}u^{
u}u^{\lambda}=0$$

- τ is affine parameter.
- Two alternative definitions for geodesics (action principle vs parallel transport). Compatible?

(日) (日) (日) (日) (日) (日) (日)

Metric compatibility

• Compatible definitions if connection is symmetric $\Gamma^{\mu}{}_{\nu\lambda} = \Gamma^{\mu}{}_{\lambda\nu}$ (torsion-free) and

$$abla_{\mu} g_{
u\lambda} = 0$$

 → Affine connection (or Levi-Civita connection) related to metric by

$$\Gamma^{\mu}{}_{\nu\lambda} = \frac{1}{2} g^{\mu\sigma} \left(\partial_{\sigma} g_{\nu\lambda} - \partial_{\nu} g_{\sigma\lambda} - \partial_{\lambda} g_{\nu\sigma} \right)$$

Metric compatibility ⇒ parallel-transport preserves scalar product.

$$u^{\mu}
abla_{\mu} (g_{lphaeta} a^{lpha} b^{eta}) = 0$$

Killing vectors

- Spacetime symmetries (isometries) \Rightarrow constants of motion
- Killing vectors of spacetime X^µ satisfy Killing's equation

$$X_{\mu;
u} + X_{
u;\mu} = 0$$

- Killing vectors are generators of infinitessimal isometries
- Contraction of Killing vector and tangent vector \Rightarrow constant of motion

$$u^{\nu}\nabla_{\nu}(u^{\mu}X_{\mu}) = u^{\nu}u^{\mu}X_{\mu;\nu} = \frac{1}{2}u^{\nu}u^{\mu}(X_{\mu;\nu} - X_{\nu;\mu}) = 0$$

- Killing vector ⇔ coordinate system where metric independent of coordinate.
- eg. Schwarzschild coords independent of $t, \phi \Rightarrow k, h$.

Fields on BH space-times

Next time:

- Klein-Gordon equation on Schwarzschild spacetime.
- Assume weak (no back-reaction), minimally-coupled and classical field.
- Scalar field Φ : 'toy model' for gravitational radiation.
- Define a field current. Causality ⇒ Boundary conditions at horizon, infinity and origin.
- Field dynamics \Rightarrow Quasi-normal modes.