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1. Introduction
o General Relativity basics
e Schwarzschild’s solution
¢ Classical mechanics
2. Scalar field + Schwarzschild Black Hole
¢ Klein-Gordon equation
o Wave-packet scattering
e Quasi-normal modes
3. Scattering theory
e Perturbation theory
o Partial wave analysis
e Glories and diffraction patterns
4. Radiation Reaction and Black Holes
o Self-force in curved spacetime
e Green’s functions
5. Acoustic Black Holes
¢ Navier-Stokes eqn — Lorentzian geometry
e Simple models
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Fields in Physics

Fields have spin s and, maybe, rest mass m.
e s =0. Scalar field. Klein-Gordon eqgn. Pion =°.
 s= 1. Spinor field. Dirac eqn. Neutrino v, electron e~.
e s=1. Vector field . Maxwell’s egns. Photon ~.

e s = 2. Tensor field. Gravitational waves (linearized).
Graviton (7).

Treat as classical or quantum fields.
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Black Hole Solutions

“Black holes have no hair”. In classical GR, black holes are
described by just three parameters.

e Mass M
e Charge Q
e Angular Momentum J.

4D Classification:
e Schwarzschild (Q =0, J = 0).
e Reissner-Nordstrom (Q # 0, J = 0).
e Kerr (Q=0,J #0).
e Kerr-Newman (Q # 0, J # 0).
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Black Hole Mechanics

GR = Laws of BH mechanics & Laws of thermodynamics
o Ist: dM = g-dA + QaJ + ¢dQ
< dU=TdS — pdV + udN
e 2nd : Horizon area always increases, dA>0 <&
entropy always increases S > 0.

e 3rd : Impossible to form a black hole with zero surface
gravity x < impossibility of absolute zero T = 0.

QFT = Hawking radiation (1970s):

kg T, —h—H where surface gravity : m—c—4
BIH= 5 gravity= R = 4amM

Black hole temperature Ty and entropy S = A/4.
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Motivations (I): Gravitational Waves

Gravitational Waves are a key prediction of General Relativity
o Very weak (h ~ 1072"). Yet to be detected!
o Weakly-interacting, coupled only to bulk motion of matter.

GWs will carry strong signals from black holes in process of:
e Formation: gravitational collapse and supernovae.
e Merger: Binary black holes in galaxy.

e Inspiral. Solar-mass BHs in orbit around supermassive
BHs (“radiation reaction” problem).
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e A surprising level of accuracy can be obtained in the
linearized approximation,
and ...

e A surprising amount can be learned by just studying a ‘toy
model’: the massless scalar field.
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Motivations (I): “Quantum Gravity”

Classically, black holes absorb and scatter radiation.
Classical GR + Quantized fields = Hawking radiation.
Thermal emission spectrum Ty = (h/2rkgc)x = BH
entropy S ~ A/4.

Information loss puzzle: is the evolution of the
wavefunction of the universe unitary?

Questions for Quantum Gravity: e.g. string theory or loop
quantum gravity.
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Motivations (lll): Speculations

e Acoustic (“dumb”) holes created in laboratory?

¢ “Higher-dimensional” black objects (BHs, strings, branes).
Experimental signature at LHC?
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Newtonian Mechanics

World view : time is absolute and universal.
e Observer-independent t coordinate.

3D world-line: x/(t) = [x' (), x2(t), x3(1)].

Newton’s Laws = differential equations for x(t)

Action principle: S = [ dt[T(X'(t)) — V(x'(1))].

e.g. T =Jm|x2and V = §[d(x)]2

. i o
= Euler-Lagrange: fi = mx; = —eg;
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Special Relativity

World view :
e Time depends on observer.
¢ |nertial observers are special.
Concept of unified space-time:
e Events in space-time labelled with four coodinates
x* = [x% x', x2, x3].
e Set of coordinates systems corresponding to lengths and
times measured by inertial observers.
e Inertial observers in constant relative motion.

e Coordinate distances measured by different inertial
observers are related by Lorentz transformation.
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Special Relativity: Lorentz Transformation

e Two inertial observers measure ‘coordinate distances’
Axt = [cAt, Ax, Ay, Az] and
AxH = [cAt, AX', Ay, AZ].

e |If the 2nd observer is moving at speed v in the +x
direction relative to the first observer, then

cAt = v (cAt— vAx/c), Ay = Ay

Ax" =y (Ax — VAL), AZ = Az,

where
v = <1 - v2/02>_1/2.
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The Interval

There is one universal quantity on which inertial observers
agree: the space-time interval,

(88)2 = (cAt)? — (Ax)? — (Ay)? — (A2)%.

jn%

The interval may be positive, negative or zero:
o time-like if (As)? > 0,
o space-like if (As)? < 0, or,
o nullif (As)? = 0.
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General Relativity (1)

e Uniform gravitational field < Uniformly-accelerating frame.
(Principle of Equivalence).

Gravity = tidal forces : parallel paths are pushed together
or pulled apart.

Locally, space-time still looks flat (Lorentzian) ...

.. but globally space-time may be curved. ‘Over there’ not
the same as ‘over here’.

No global inertial frame.

Define and compare local quantities.
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General Relativity: The Metric

e Space-time interval in differential (local) form:

3 3

ds® = 3" > gu(x)ax*ox” (1)
n=0v=0

= g, dx"dx” (2)

* g, is a symmetric tensor called the metric.
e Summation convention is used (‘one up, one down’).
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General Relativity: The Metric

Space-time interval in differential (local) form:

3 3

ds® = 3" > gu(x)ax*ox” (1)
n=0v=0

= g, dx"dx” (2)

9. is a symmetric tensor called the metric.
Summation convention is used (‘one up, one down’).
Metric inverse g*” is defined by

guygux\ — (52

The metric (metric inverse) raises (lowers) indices, i.e.

dx, = gu.ax”. i
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Coordinate Transformations
e Many different coordinate systems describe the same
space-time.
¢ Under general coordinate transformation,

x — x' = x"(x)
‘up’ and ‘down’ indices transform in opposite ways:

oxH

a/” = —
oxH

oxt "
= a a
oxe < d

ay.
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Coordinate Transformations

e Many different coordinate systems describe the same
space-time.

¢ Under general coordinate transformation,
x — x' = x"(x)
‘up’ and ‘down’ indices transform in opposite ways:

_oxH _Ox*
= o ur = 5 B

a"

« i.e. transform like dx* or like 2.

e To define a scalar that is coordinate-independent we
contract upper and lower indices, e.g.

® = g,b! sothat® — &' =
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Geodesics

Particles follow world-lines in space-time : x* = x#(\) ...

Free particles follow privileged world-lines called
geodesics.

Geodesics are the generalisation of the Euclidean idea of
a straight line.

Straight line: shortest distance between two points.

Geodesic: path between two points along which the
interval is extremal.
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World-lines

e Free particles follow geodesics = action principle

S= /ds = /d/\ L(x*, x"; t) where L = /g, Xx*xV

. __ dxm
and x*(\) and x* = .
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World-lines

e Free particles follow geodesics = action principle

S= /ds = /d/\ L(x*, x"; t) where L = /g, Xx*xV

and x*(\) and x* = &
e Euler-Lagrange equations:

oL _d (oL
oxr — dx \ Ox»
e For time-like paths, set d\ = ds = cdr, where 7 is the
proper time experienced by the particle.
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The Schwarzschild Space-time

Unique asymptotically flat space-time exterior to a
spherically-symmetric grav. source (e.g. our Sun).

In Schwarzschild coordinates

ds? = (1—2M/r)d?—(1—2M/r)~" dr? —r?(d¢?+sin? 6d¢?).

Units: G=c=1,s0 M= GM/c2.
Event horizon at r = 2M.
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The Schwarzschild Space-time

e Unique asymptotically flat space-time exterior to a
spherically-symmetric grav. source (e.g. our Sun).

¢ In Schwarzschild coordinates
ds?® = (1—2M/r)dt?—(1—2M/r)~ " dr® — r?(d¢?+sin? 6d$?).

e Units: G=c=1,s0 M= GM/c?.
e Event horizon at r = 2M.

e Compact objects that lie entirely within their horizon are
black holes.

e Many other coordinate systems may be used.
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e Metric is independent of t and ¢ = conserved quantities
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Schwarzschild Geodesics (l)
ds? = (1 —2M/r)dt?> — (1 —2M/r)~"dr? — r?(d6? + sin? 0d¢?).

e Metric is independent of t and ¢ = conserved quantities
e In equatorial plane (6 = /2, 6 =0):
(1 —2M/r)t = k,
r’¢ = h.
e ‘Energy’ k and ‘Angular momentum’ h.

« To find an equation for r, use

L 0 null
ByV — 2 =
Gr XX =€ —{ 1 time-like ®
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Schwarzschild Geodesics (ll)

o Use g, Xx"x¥ = € to get

(1=2M/n)t2 — (1 =2M/r)" /% — r?¢? = &




General Relativity: Basics The Schwarzschild Space-time Essential Concepts

Schwarzschild Geodesics (ll)

o Use g, Xx"x¥ = € to get

(1=2M/Nt2 — (1 —2M/r) i — r?¢? = &

¢ Insert constants of motion to get energy equation :
?+ Vert(r) = K2 — 527

with an effective potential

Vert(r) = —

2Me2 M ( 2M>
+— .
r r
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The Schwarzschild Space-time

Effective Potential

Essential Concepts

This plot shows the effective potential for timelike geodesics
with a range of angular momenta h = r?¢.

Effective potential, Vg(r)
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The Schwarzschild Space-time

Radial infall

Consider a particle falling radially inwards:
e (1—2M/r)t=k,h=0,andr = k?® —1+2M/r
e If it starts from rest at infinity = k = 1
e Integrating, we find

_ 2 3/2  3/2

e Passes through horizon smoothly in finite 7.
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Radial infall

Consider a particle falling radially inwards:
e (1—2M/r)t=k,h=0,andr = k?® —1+2M/r
e If it starts from rest at infinity = k = 1
Integrating, we find

_ 2 3/2 _ .3/2

Passes through horizon smoothly in finite 7.

But t — oo as r — 2M = coordinate singularity.

Coordinate time t diverges as horizon is approached



The Schwarzschild Space-time

Circular Orbits

Circular orbits occur at points where % =0.

Orbit is stable if dZ‘r/;ff >0

Exercises :
1. Show that the unstable photon (i.e. null) orbit is at r = 3M.
2. Show that the stable time-like orbit is at
r = (K2/2M) (1 /1o 12M2/h2).

3. Show that the innermost stable time-like orbit is at r = 6 M.
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Scattering and Absorption (1)

Photon geodesics around a Schwarzschild black hole

10 T T T

-10 B

-10 v
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Scattering (II)

« Divide energy equation by ¢ to get orbit equation

2 2_ 2 2
(du) I U PV

diqg h2 +h2

where u=1/r.

Essential Concepts
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Scattering (II)

« Divide energy equation by ¢ to get orbit equation

du\ 2 ° k2 — 2 2Meé?
diqs +ut = h2 + h2

where u=1/r.

¢ Differentiate to get GR version of Binet’s equation

d2u ~ Me
W h2 + 3MU

U+ 2MuB

Essential Concepts
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do
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Deflection-angle Approximations:

o Weak-field deflection:
NG ~ 4M/b

do
lim ——= ~1/6*
éel—%dﬂ /0

¢ Strong-field deflection: Unstable orbit at r = 3M

AG ~ —In[(b - bg)/3.48M]
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Absorption

e Critical impact parameter b, = 3v/3M (massless)

e b > b, : scattered.
e b < b, : absorbed.
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Absorption

e Critical impact parameter b, = 3v/3M (massless)

e b > b, : scattered.
e b < b, : absorbed.

e Absorption cross section:

0a=1h? = 277 M?

Essential Concepts
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Alternative Coordinate Systems

Problem: for ingoing geodesics, t — +occ as r — 2M.
t is the time measured by observer at infinity.

Solution: to continue geodesics across the horizon, use a
horizon-penetrating coordinate system.

Define new time coordinate t' = f(t).
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Advanced Eddington-Finkelstein Coordinates

o Define new time coordinate t :

ar

t=t+2MIn(r —2M) = dt:dt+r_2M
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Advanced Eddington-Finkelstein Coordinates

o Define new time coordinate t :

ar

t=t+2MIn(r —2M) = dt:dt+r_2M

e Metric:

ds? = (1—2M/r)dt® — (4M/r)drdt— (1+2M/r)dr® — r*dQ?
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Advanced Eddington-Finkelstein Coordinates

o Define new time coordinate t :

t=t+2MIn(r — 2M) = dt=dt + ar

r—2m

Metric:

ds? = (1—2M/r)dt® — (4M/r)drdt— (1+2M/r)dr® — r*dQ?

Exercise: Show that for Ingoing null geodesic in AEF
coordinates, .
t=—r.

i.e. ingoing null geodesics are straight lines at —45°.
Metric no longer invariant under time reversal.
Time reversal = Retarded E-F coords. @
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Painlevé-Gullstrand Coordinates

« Define new time coordinate t :

) JT72M — 1 _
P— tram [ e+ Lin| YIEM =0 g - ge VRM
2 |\ /r/2M +1 r—2m
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Painlevé-Gullstrand Coordinates

« Define new time coordinate t :

) JT72M — 1 _
P— tram [ e+ Lin| YIEM =0 g - ge VRM
2 |\ /r/2M +1 r—2m

e Metric:

ds? = (1 —2M/r)d?2—\/gdrd?—drz—rz(de%rsinz 0d?)
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Painlevé-Gullstrand Coordinates

Define new time coordinate t :

P team (JraM4 Lin [YBM =T gr gy Y2ME
2 | \Jr2M+1 r—2m

Metric:

ds? = (1 —2M/r)d?2—\/gdrd?—drz—rz(de%rsinz 0d?)

Exercise : Show that for an infalling particle starting from
rest at infinity (k = 1), .
t=1
i.e. the time coordinate f has a physical interpretation: it is
the time as measured by an infalling observer.
Const. t hypersurfaces are spatially flat. @



Essential Concepts

Progress so far

Geodesics on Schwarzschild spacetime
Interval = Action principle = E-L equation = dynamics

Skipped differential geometry!

Now : Recap important concepts in GR:
e Tensors
e Covariant differentiation
Parallel transport
Geodesic equation
Connections and metric-compatibility
Killing vectors
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Tensors

e Under coordinate transform x — x’ = x*/(x),

ravariant :  a”(x') = X a0 3

contravariant :  a¥(x’) = S 2 (x), 3)
o , oxH

covariant : bu(x) = Wb“(x)' (4)

e Contraction = coordinate-independent scalar
a“bu = ’U’,bu/

e Tensors :

ax oxb! AxY Ox®
alfl... _ af...
T . = <8xa oxP > <8X7’ x°! ) T 5.
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Covariant derivative (1)

e Construct a derivative of a vector field & that behaves like
a tensor

e Try 9,a" ... no good!

a‘u/ al//

_oxH 9 [ox” )\ oxtox” . ., Oxt 9Px”
—OxH Oxr \ OxV

e Define covariant derivative V,,
V,a =8+ a

where T is called a connection (or Christoffel symbol)

= a a
oxw oxv OXH HXHOXV
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Covariant derivative (ll)

e Connection is not a tensor. It transforms as

oxe! ( 92 x oxP oxY

rozl — +
Bt = "gxa \ axPaxr’ " axB ox'

e so that V,a” transforms as a tensor

_Ox# oxv! a
Coxm oxv P

4

V;,L/ al//

e Comma and semicolon notation :

a', =o,a a'., =v,a

r ﬁv)

Essential Concepts



Parallel Transport

Transport a vector a” along a world-line x*(\)
Tangent vector to world-line u# = ¢
Covariant derivative operator: 5y = u*V,
Parallel-transport condition

Da”
DX

=u'v,a =0.

Essential Concepts
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Geodesics

Geodesic: ‘Straight line in curved spacetime’
Parallel transport tangent vector u* = % using

u’V,u* = 0 to construct geodesic x*()
Geodesic equation:

Du*  du*
= 4 Ut =0
Dr ar L2

7 is affine parameter.

Two alternative definitions for geodesics (action principle
vs parallel transport). Compatible?
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Metric compatibility

e Compatible definitions if connection is symmetric
r#,» = "y, (torsion-free) and

Vugy)\ =0
e = Affine connection (or Levi-Civita connection) related to
metric by
1
r#uA = EQW (3(79”)\ - al/ga)\ - a)\glla)
e Metric compatibility = parallel-transport preserves scalar

product.
U'V,,(gapa®b’) =0
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Killing vectors

Spacetime symmetries (isometries) = constants of motion

Killing vectors of spacetime X* satisfy Killing’s equation
Xuw + Xo =0

Killing vectors are generators of infinitessimal isometries

Contraction of Killing vector and tangent vector = constant
of motion

UV (UHXy) = U7 0P Xy = U7 U (X — Xo) = 0

Killing vector < coordinate system where metric
independent of coordinate.

eg. Schwarzschild coords independent of t, ¢ = k, h.
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Fields on BH space-times

Next time:
¢ Klein-Gordon equation on Schwarzschild spacetime.

Assume weak (no back-reaction), minimally-coupled and
classical field.

Scalar field ¢ : ‘toy model’ for gravitational radiation.

Define a field current. Causality = Boundary conditions at
horizon, infinity and origin.

Field dynamics = Quasi-normal modes.
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