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Course Content
1. Introduction

• General Relativity basics
• Schwarzschild’s solution
• Classical mechanics

2. Scalar field + Schwarzschild Black Hole
• Klein-Gordon equation
• Wave-packet scattering
• Quasi-normal modes

3. Scattering theory
• Perturbation theory
• Partial wave analysis
• Glories and diffraction patterns

4. Radiation Reaction and Black Holes
• Self-force in curved spacetime
• Green’s functions

5. Acoustic Black Holes
• Navier-Stokes eqn → Lorentzian geometry
• Simple models
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Fields in Physics

Fields have spin s and, maybe, rest mass m.
• s = 0. Scalar field. Klein-Gordon eqn. Pion π0.
• s = 1

2 . Spinor field. Dirac eqn. Neutrino ν, electron e−.
• s = 1. Vector field . Maxwell’s eqns. Photon γ.
• s = 2. Tensor field. Gravitational waves (linearized).

Graviton (?).

Treat as classical or quantum fields.
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Black Hole Solutions

“Black holes have no hair”. In classical GR, black holes are
described by just three parameters.
• Mass M
• Charge Q
• Angular Momentum J.

4D Classification:
• Schwarzschild (Q = 0, J = 0).
• Reissner-Nordström (Q 6= 0, J = 0).
• Kerr (Q = 0, J 6= 0).
• Kerr-Newman (Q 6= 0, J 6= 0).
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Black Hole Mechanics

GR ⇒ Laws of BH mechanics ⇔ Laws of thermodynamics
• 1st : dM = κ

8π dA + ΩdJ + ΦdQ
⇔ dU = TdS − pdV + µdN

• 2nd : Horizon area always increases, dA ≥ 0 ⇔
entropy always increases S ≥ 0.

• 3rd : Impossible to form a black hole with zero surface
gravity κ ⇔ impossibility of absolute zero T = 0.

QFT ⇒ Hawking radiation (1970s):

kBTH =
~κ

2πc
, where surface gravity : κ =

c4

4GM

Black hole temperature TH and entropy S = A/4.
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Motivations (I): Gravitational Waves

Gravitational Waves are a key prediction of General Relativity
• Very weak (h ∼ 10−21). Yet to be detected!
• Weakly-interacting, coupled only to bulk motion of matter.

GWs will carry strong signals from black holes in process of:
• Formation: gravitational collapse and supernovae.
• Merger: Binary black holes in galaxy.
• Inspiral. Solar-mass BHs in orbit around supermassive

BHs (“radiation reaction” problem).
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Motivations (I): Gravitational Waves

• Are black holes stable to small perturbations?
• Precise modelling of BH signals requires full non-linear

numerical solutions to Einstein’s field equations,
but ...

• A surprising level of accuracy can be obtained in the
linearized approximation,
and ...

• A surprising amount can be learned by just studying a ‘toy
model’: the massless scalar field.
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Motivations (II): “Quantum Gravity”

• Classically, black holes absorb and scatter radiation.
• Classical GR + Quantized fields ⇒ Hawking radiation.
• Thermal emission spectrum TH = (~/2πkBc)κ⇒ BH

entropy S ∼ A/4.
• Information loss puzzle: is the evolution of the

wavefunction of the universe unitary?
• Questions for Quantum Gravity: e.g. string theory or loop

quantum gravity.
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Motivations (III): Speculations

• Acoustic (“dumb”) holes created in laboratory?

• “Higher-dimensional” black objects (BHs, strings, branes).
Experimental signature at LHC?
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Newtonian Mechanics

World view : time is absolute and universal.
• Observer-independent t coordinate.

• 3D world-line: x i(t) ≡ [x1(t), x2(t), x3(t)].

• Newton’s Laws ⇒ differential equations for x i(t)

• Action principle: S =
∫

dt [T (ẋ i(t))− V (x i(t))].

• e.g. T = 1
2m|ẋ |2 and V = e

2 [Φ(x)]2

• ⇒ Euler-Lagrange: fi = mẍi = −e ∂Φ
∂x i
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2m|ẋ |2 and V = e

2 [Φ(x)]2

• ⇒ Euler-Lagrange: fi = mẍi = −e ∂Φ
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Special Relativity

World view :
• Time depends on observer.
• Inertial observers are special.

Concept of unified space-time:
• Events in space-time labelled with four coodinates

xµ = [x0, x1, x2, x3].
• Set of coordinates systems corresponding to lengths and

times measured by inertial observers.
• Inertial observers in constant relative motion.
• Coordinate distances measured by different inertial

observers are related by Lorentz transformation.
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Special Relativity: Lorentz Transformation

• Two inertial observers measure ‘coordinate distances’
∆xµ = [c∆t ,∆x ,∆y ,∆z] and
∆xµ′ = [c∆t ′,∆x ′,∆y ′,∆z ′].

• If the 2nd observer is moving at speed v in the +x
direction relative to the first observer, then

c∆t ′ = γ (c∆t − v∆x/c) , ∆y ′ = ∆y
∆x ′ = γ (∆x − v∆t) , ∆z ′ = ∆z,

where
γ =

(
1− v2/c2

)−1/2
.
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The Interval

There is one universal quantity on which inertial observers
agree: the space-time interval,

(∆s)2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

=
∑
µν

ηµν∆xµ∆xν .

The interval may be positive, negative or zero:
• time-like if (∆s)2 > 0,
• space-like if (∆s)2 < 0, or,
• null if (∆s)2 = 0.



General Relativity: Basics The Schwarzschild Space-time Essential Concepts

The Interval

There is one universal quantity on which inertial observers
agree: the space-time interval,

(∆s)2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2.

=
∑
µν

ηµν∆xµ∆xν .

The interval may be positive, negative or zero:
• time-like if (∆s)2 > 0,
• space-like if (∆s)2 < 0, or,
• null if (∆s)2 = 0.



General Relativity: Basics The Schwarzschild Space-time Essential Concepts

General Relativity (I)

• Uniform gravitational field ⇔ Uniformly-accelerating frame.
(Principle of Equivalence).

• Gravity ⇒ tidal forces : parallel paths are pushed together
or pulled apart.

• Locally, space-time still looks flat (Lorentzian) ...
• .. but globally space-time may be curved. ‘Over there’ not

the same as ‘over here’.
• No global inertial frame.
• Define and compare local quantities.
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General Relativity: The Metric
• Space-time interval in differential (local) form:

ds2 =
3∑

µ=0

3∑
ν=0

gµν(x)dxµdxν (1)

≡ gµνdxµdxν (2)

• gµν is a symmetric tensor called the metric.
• Summation convention is used (‘one up, one down’).
• Metric inverse gµν is defined by

gµνgνλ = δλ
µ

• The metric (metric inverse) raises (lowers) indices, i.e.

dxµ = gµνdxν .
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Coordinate Transformations
• Many different coordinate systems describe the same

space-time.
• Under general coordinate transformation,

x 7→ x ′ = xµ′(x)

‘up’ and ‘down’ indices transform in opposite ways:

aµ′ =
∂xµ′

∂xµ
aµ, aµ′ =

∂xµ

∂xµ′aµ.

• i.e. transform like dxµ or like ∂
∂xµ .

• To define a scalar that is coordinate-independent we
contract upper and lower indices, e.g.

Φ = aµbµ so that Φ 7→ Φ′ = Φ
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Geodesics

• Particles follow world-lines in space-time : xµ = xµ(λ) ...
• Free particles follow privileged world-lines called

geodesics.
• Geodesics are the generalisation of the Euclidean idea of

a straight line.
• Straight line: shortest distance between two points.
• Geodesic: path between two points along which the

interval is extremal.
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World-lines

• Free particles follow geodesics ⇒ action principle

S =

∫
ds =

∫
dλ L(xµ, ẋµ; t) where L =

√
gµν ẋµẋν

and xµ(λ) and ẋµ ≡ dxµ

dλ .
• Euler-Lagrange equations:

∂L
∂xµ

=
d

dλ

(
∂L
∂ẋµ

)
• For time-like paths, set dλ = ds = cdτ , where τ is the

proper time experienced by the particle.
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and xµ(λ) and ẋµ ≡ dxµ
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The Schwarzschild Space-time

• Unique asymptotically flat space-time exterior to a
spherically-symmetric grav. source (e.g. our Sun).

• In Schwarzschild coordinates

ds2 = (1−2M/r)dt2−(1−2M/r)−1dr2−r2(dθ2+sin2 θdφ2).

• Units: G = c = 1, so M ≡ GM/c2.
• Event horizon at r = 2M.
• Compact objects that lie entirely within their horizon are

black holes.
• Many other coordinate systems may be used.
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Schwarzschild Geodesics (I)

ds2 = (1− 2M/r)dt2 − (1− 2M/r)−1dr2 − r2(dθ2 + sin2 θdφ2).

• Metric is independent of t and φ⇒ conserved quantities
• In equatorial plane (θ = π/2, θ̇ = 0):

(1− 2M/r)ṫ = k ,

r2φ̇ = h.

• ‘Energy’ k and ‘Angular momentum’ h.
• To find an equation for ṙ , use

gµν ẋµẋν = ε2 ≡
{

0 null
1 time-like
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Schwarzschild Geodesics (II)

• Use gµν ẋµẋν = ε2 to get

(1− 2M/r)ṫ2 − (1− 2M/r)−1ṙ2 − r2φ̇2 = ε2

• Insert constants of motion to get energy equation :

ṙ2 + Veff(r) = k2 − ε2,

with an effective potential

Veff(r) = −2Mε2

r
+

h2

r2

(
1− 2M

r

)
.
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Effective Potential
This plot shows the effective potential for timelike geodesics
with a range of angular momenta h = r2φ̇.
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Radial infall

Consider a particle falling radially inwards:
• (1− 2M/r)ṫ = k , h = 0, and ṙ = k2 − 1 + 2M/r
• If it starts from rest at infinity ⇒ k = 1
• Integrating, we find

τ − τ0 =
2

3(2M)1/2

(
r3/2
0 − r3/2

)
• Passes through horizon smoothly in finite τ .
• But ṫ →∞ as r → 2M ⇒ coordinate singularity.
• Coordinate time t diverges as horizon is approached



General Relativity: Basics The Schwarzschild Space-time Essential Concepts

Radial infall

Consider a particle falling radially inwards:
• (1− 2M/r)ṫ = k , h = 0, and ṙ = k2 − 1 + 2M/r
• If it starts from rest at infinity ⇒ k = 1
• Integrating, we find

τ − τ0 =
2

3(2M)1/2

(
r3/2
0 − r3/2

)
• Passes through horizon smoothly in finite τ .
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Radial infall

Consider a particle falling radially inwards:
• (1− 2M/r)ṫ = k , h = 0, and ṙ = k2 − 1 + 2M/r
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• Integrating, we find
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)
• Passes through horizon smoothly in finite τ .
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Circular Orbits

Circular orbits occur at points where dVeff
dr = 0.

Orbit is stable if d2Veff
dr2 > 0

Exercises :
1. Show that the unstable photon (i.e. null) orbit is at r = 3M.
2. Show that the stable time-like orbit is at

r = (h2/2M)
(

1 +
√

1− 12M2/h2
)

.

3. Show that the innermost stable time-like orbit is at r = 6M.
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Scattering and Absorption (I)
Photon geodesics around a Schwarzschild black hole
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Scattering (II)

• Divide energy equation by φ̇2 to get orbit equation(
du
dφ

)2

+ u2 =
k2 − ε2

h2 +
2Mε2

h2 u + 2Mu3

where u = 1/r .
• Differentiate to get GR version of Binet’s equation

d2u
dφ2 + u =

Mε

h2 + 3Mu2.
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Deflection-angle Approximations:

• Weak-field deflection:

∆θ ≈ 4M/b

⇒ lim
θ→0

dσ

dΩ
∼ 1/θ4

• Strong-field deflection: Unstable orbit at r = 3M

∆θ ∼ − ln [(b − bc)/3.48M]
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Absorption

• Critical impact parameter bc = 3
√

3M (massless)
• b > bc : scattered.
• b < bc : absorbed.

• Absorption cross section:

σa = πbc
2 = 27πM2

.
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Alternative Coordinate Systems

• Problem: for ingoing geodesics, t → +∞ as r → 2M.
• t is the time measured by observer at infinity.
• Solution: to continue geodesics across the horizon, use a

horizon-penetrating coordinate system.
• Define new time coordinate t ′ = f (t).
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Advanced Eddington-Finkelstein Coordinates
• Define new time coordinate t̄ :

t̄ = t + 2M ln(r − 2M) ⇒ dt̄ = dt +
2M

r − 2M
dr

• Metric:

ds2 = (1−2M/r)dt̄2−(4M/r)drd t̄−(1+2M/r)dr2− r2dΩ2

• Exercise: Show that for Ingoing null geodesic in AEF
coordinates,

˙̄t = −ṙ .

• i.e. ingoing null geodesics are straight lines at −45◦.
• Metric no longer invariant under time reversal.
• Time reversal ⇒ Retarded E-F coords.
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Painlevé-Gullstrand Coordinates
• Define new time coordinate t̃ :

t̃ = t+4M

(√
r/2M +

1
2

ln

∣∣∣∣∣
√

r/2M − 1√
r/2M + 1

∣∣∣∣∣
)
⇒ dt̃ = dt+

√
2Mr

r − 2M
dr

• Metric:

ds2 = (1−2M/r)dt̃2−
√

8M
r

drd t̃−dr2−r2(dθ2+sin2 θdφ2)

• Exercise : Show that for an infalling particle starting from
rest at infinity (k = 1),

˙̃t = 1

• i.e. the time coordinate t̃ has a physical interpretation: it is
the time as measured by an infalling observer.

• Const. t hypersurfaces are spatially flat.
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Progress so far

• Geodesics on Schwarzschild spacetime

• Interval ⇒ Action principle ⇒ E-L equation ⇒ dynamics

• Skipped differential geometry!

• Now : Recap important concepts in GR:
• Tensors
• Covariant differentiation
• Parallel transport
• Geodesic equation
• Connections and metric-compatibility
• Killing vectors
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Tensors

• Under coordinate transform x 7→ x ′ = xµ′(x),

contravariant : aµ′(x ′) =
∂xµ′

∂xµ
aµ(x), (3)

covariant : bµ′(x ′) =
∂xµ

∂xµ′bµ(x). (4)

• Contraction ⇒ coordinate-independent scalar
aµbµ = aµ′bµ′

• Tensors :

T α′β′...
γ′δ′... =

(
∂xα′

∂xα

∂xβ′

∂xβ
. . .

)(
∂xγ

∂xγ′
∂xδ

∂xδ′ . . .

)
T αβ...

γδ...
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Covariant derivative (I)

• Construct a derivative of a vector field aµ that behaves like
a tensor

• Try ∂νaµ . . . no good!

∂µ′ aν′ =
∂xµ

∂xµ′
∂

∂xµ

(
∂xν′

∂xν
aν

)
=

∂xµ

∂xµ′
∂xν′

∂xν
∂µaν+

∂xµ

∂xµ′
∂2xν′

∂xµ∂xν
aν

• Define covariant derivative ∇µ

∇µaν = ∂µaν + Γν
µλaλ

where Γ is called a connection (or Christoffel symbol)
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Covariant derivative (II)

• Connection is not a tensor. It transforms as

Γα′
β′γ′ =

∂xα′

∂xα

(
∂2xα

∂xβ′∂xγ′ +
∂xβ

∂xβ′
∂xγ

∂xγ′Γ
α

βγ

)

• so that ∇µaν transforms as a tensor

∇µ′aν′ =
∂xµ

∂xµ′
∂xν′

∂xν
∇µaν

• Comma and semicolon notation :

aµ
,ν ≡ ∂νaµ aµ

;ν ≡ ∇νaµ
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Parallel Transport

• Transport a vector aν along a world-line xµ(λ)

• Tangent vector to world-line uµ = dxµ

dλ

• Covariant derivative operator: D
Dλ = uµ∇µ

• Parallel-transport condition

Daν

Dλ
= uµ∇µaν = 0.
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Geodesics

• Geodesic: ‘Straight line in curved spacetime’

• Parallel transport tangent vector uµ = dxµ

dτ using
uν∇νuµ = 0 to construct geodesic xµ(τ)

• Geodesic equation:

Duµ

Dτ
≡ duµ

dτ
+ Γµ

νλuνuλ = 0

• τ is affine parameter.

• Two alternative definitions for geodesics (action principle
vs parallel transport). Compatible?
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Metric compatibility
• Compatible definitions if connection is symmetric

Γµ
νλ = Γµ

λν (torsion-free) and

∇µgνλ = 0

• ⇒ Affine connection (or Levi-Civita connection) related to
metric by

Γµ
νλ =

1
2

gµσ (∂σgνλ − ∂νgσλ − ∂λgνσ)

• Metric compatibility ⇒ parallel-transport preserves scalar
product.

uµ∇µ(gαβaαbβ) = 0



General Relativity: Basics The Schwarzschild Space-time Essential Concepts

Killing vectors

• Spacetime symmetries (isometries)⇒ constants of motion

• Killing vectors of spacetime Xµ satisfy Killing’s equation

Xµ;ν + Xν;µ = 0

• Killing vectors are generators of infinitessimal isometries

• Contraction of Killing vector and tangent vector ⇒ constant
of motion

uν∇ν(uµXµ) = uνuµXµ;ν = 1
2uνuµ(Xµ;ν − Xν;µ) = 0

• Killing vector ⇔ coordinate system where metric
independent of coordinate.

• eg. Schwarzschild coords independent of t , φ⇒ k , h.
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Fields on BH space-times

Next time:
• Klein-Gordon equation on Schwarzschild spacetime.

• Assume weak (no back-reaction), minimally-coupled and
classical field.

• Scalar field Φ : ‘toy model’ for gravitational radiation.

• Define a field current. Causality ⇒ Boundary conditions at
horizon, infinity and origin.

• Field dynamics ⇒ Quasi-normal modes.


	General Relativity: Basics
	The Schwarzschild Space-time
	Essential Concepts

